Photon-tagged Jet Fragmentation Functions in pp and PbPb Collisions at 5.02 TeV with CMS

Kaya Tatar Massachusetts Institute of Technology **PHIT** *for the CMS Collaboration*

5th Heavy-Ion Jet Workshop, CERN August 22, 2017

Introduction

- The fragmentation pattern of a high energy parton is predicted and measured to be modified in A+A collisions.
- Jet fragmentation function (FF)
	- Info about longitudinal distribution of the momentum
	- Separate energy loss models
	- Sensitive to hadronization

FF at LHC and RHIC so far

- jet+hadrons FF (at LHC)
- take hadrons inside the jet cone
- project p_{T} ^h (or p ^h) onto jet axis
- look at the fraction in p_T^{jet} (or p^{jet})

- photon-hadrons FF (at RHIC), no reconstructed jets
- take hadrons away from the triggering object (photon)
- look at the fraction of hadron p_{τ} in photon p_{τ}

Jet based FF at LHC - CMS

z =

p||

p jet

trk

enhancement for ch. particles with $1 < pT < 3$ GeV/c, $\xi > 3.5$ Small depletion in the intermediate pT range, 2 < ξ < 3

Kaya Tatar 1986 - Kaya Tatar 1986 - Kaya Tatar 1988 - Kaya Tatar 1988 - Kaya Tatar 1988 - Kaya Tatar 1988 - Ka

jet

llit

Jet based FF at LHC - ATLAS

Photon based FF at RHIC

- No significant modification in **d+Au**
- Modification in **Au+Au**
	- suppression at small ξ (large ${\sf p}_{_{\sf T}}$ h)
	- enhancement at large ξ (small p_T^h)

Joe Osborn @ QM 2017

Jet FF with Dijets

Jet based FF measurements up to now were made with **dijet** samples.

- Pro : High statistics
- Con : Comparison is based on reconstructed jets (after suffering quenching). No control over initial kinematics

Jet FF with Photon+jet

One can **constrain the initial parton kinematics** if one of the hard scatterers is a **photon**. 5 TeV data set is large enough to perform this type of measurement.

Motivation : understand QCD properties of the medium via longitudinal modification of parton shower

Goal : Measure **jet FF** in **isolated-photon+jet** events in PbPb and compare to pp

Observables - ξ jet

- Take tracks inside the jet cone.
- **Project** the track momentum to **jet axis**.
- Divide jet momentum by the projected track momentum.
- The natural log of this ratio is called ξ^{jet} .

γ

Observables - ξ^γ

- Take tracks inside the jet cone.
- Construct transverse momentum vectors for track and photon
- Invert the track transverse momentum
- Follow the same logic as for ξ^{jet} .

: transverse momentum vector of the photon : transverse momentum vector of the track

Observables

$$
\xi^{jet} = \ln \frac{|\bm{p}^{jet}|^2}{\bm{p}^{trk} \cdot \bm{p}^{jet}}
$$

- Based on **reconstructed jet energy**
- Measured previously, eg.

$$
\mathbf{r}_{\mathrm{r}}^{\mathrm{v}}=\ln\frac{-|\mathbf{p}_{T}^{\mathrm{v}}|^{2}}{\mathbf{p}_{T}^{\mathrm{trk}}\cdot\mathbf{p}_{T}^{\mathrm{v}}}
$$

- Based on **photon energy**, proxy for the parton energy before jet quenching.
- Measured for the first time for reconstructed jets
	- only theoretical calculations so far
- ξ^{jet} and ξ_{τ} **γ** are measured **together for the first time**.

Kaya Tatar 11 5th Heavy-Ion Jet Workshop

Object Selections

Analysis

• Observables are constructed using photons, jets and tracks.

Background sources

Subtracted via Min Bias event mixing **Tracks from underlying event Mis-identified (fake) jets**

liī

Analysis

Observables are constructed using photons, jets and tracks.

Neutral meson decay

h 0 ->γγ

Background source

photons from neutral meson decays

- rejected with shower shape cut
- 2 photons are reconstruced as single with a **wider shower shape**
	- \bullet dominates the sideband region : 0.011 < $\sigma_{_{\sf nn}}$ < 0.017

Energy weighted width of shower : $\sigma_{\eta\eta}$

$$
\sigma_{\eta\eta}^2 = \frac{\sum_{i}^{5\times 5} w_i (\eta_i - \eta_{5\times 5})^2}{\sum_{i}^{5\times 5} w_i}, \qquad w_i = \max(0, 4.7 + \ln \frac{E_i}{E_{5\times 5}}
$$

CMS-PAS-HIN-16-002

Kaya Tatar 14 5th Heavy-Ion Jet Workshop

Background from photons

- $\sigma_{\rm m}$ < 0.01 selects narrow shower shape, supresses background from neutral meson decays, however there is still contamination.
- Purity $=$ fraction of the prompt photons among candidates
	- Estimated using template fit method. Fit the distribution for $\sigma_{\rm m}$ < 0.01 with

Signal (prompt photon) template from MC with isolated photon events Bkg (neutral meson) template from non-isolated photons in data

Smearing jet spectra

- **Jet energy resolution** and jet angular resolution differ between pp and PbPb due to underlying event
	- Estimate relative resolution between pp and PbPb using simulations
	- Smear jet spectra in pp using this relative resolution
- **Smearing jet energy**
	- Parametrize jet energy resolution via

$$
\sigma \left(\frac{p_T^{RECO}}{p_T^{GEN}} \right) = \sqrt{C^2 + \frac{S^2}{p_T^{GEN}} + \frac{N^2}{(p_T^{GEN})^2}}
$$

– Fit C, S and N parameters and apply relative resolution via

$$
\sigma_{rel} = \sqrt{(C_{PbPb}^2 - C_{pp}^2) + \frac{(S_{PbPb}^2 - S_{pp}^2)}{p_T^{\text{GEN}}} + \frac{(N_{PbPb}^2 - N_{pp}^2)}{(p_T^{\text{GEN}})^2}}
$$

- **Smearing jet azimuthal angle**
	- Use same parametrization as in jet energy resolution
	- Apply relative resolution in the same fashion

Kaya Tatar 16 5th Heavy-Ion Jet Workshop

N 2

 $(p_T^{\mathit{\text{GEN}}})^2$

S 2

GEN +

 $p_{\,T}^{\,\text{\tiny G}}$

 σ (| ϕ ^{*RECO*} - ϕ ^{*GEN*}|)= $\sqrt{C^2 + C^2}$

BKG subtraction for jets and tracks

isolated-photon+jet event MB event

- **MB event mixing technique**
	- Estimate the bkg from fake jets and bkg tracks by constructing the observable using jets and tracks in matching MB events
- For each signal event find MB events with very close
	- centrality bin
	- vertex position in z-direction
	- event plane angle

Analysis steps – bkg tracks

isolated-photon+jet event MB event

叫证

Analysis steps – bkg jets

BKG subtraction – tracks and jets

Analysis steps - photons

Results - ξ

jet CMS-PAS HIN-16-014

In central collisions, ξ jet in PbPb is modified suggesting an **enhancement of low energy particles** and a **depletion of high energy particles**. Peripheral PbPb is consistent with pp.

jet CMS-PAS HIN-16-014

 $p_{\tau}^{jet} = 30 \text{ GeV/c}$

 $p_{\tau}^{jet} = 60$ GeV/c

 $p_{\tau}^{\text{jet}} = 90 \text{ GeV/c}$

 ΔR (jet, trk) = 0

Results - ξ

 $\overline{2}$

 2.5

jet,

3

 $\overline{3.5}$

4.5

4

Results - ξ^T

γ CMS-PAS HIN-16-014

of high energy particles. More significant than ξ^{jet} **. Peripheral PbPb is consistent with pp.**

Kaya Tatar 24 5th Heavy-Ion Jet Workshop

γ CMS-PAS HIN-16-014

Results - ξ^T

γ CMS-PAS HIN-16-014

Results - ξ jet vs ξ^T

- Based on reconstructed jet energy (energy after quenching)
- Jets are tagged by photon.
- \bullet $\,$ General shift to left compared to $\, \boldsymbol{\xi}_{_{\rm T}} \,$ γ
	- Out-of-cone radiation, photon+>1 jet, quenching in PbPb
- **Based on initial parton energy**
- **Modification is relatively stronger.**
- Centrality dependence is more clear.

Summary

●FF of jets associated with isolated-photons is measured for the **first time** in pp and PbPb collisions. • Selection based on isolated photon provides helps **tagging the initial parton kinematics**.

 $^{\bullet}$ Study is done using jet momentum based and photon momentum based FF observables : $\bm{\xi}$ j^{et} and $\bm{\xi}_{\textsf{T}}{}^{\gamma}$

*For both ξ^{jet} and ξ_τγ, distributions in central collisions are modified indicating an **excess of low pt particles** and a **depletion of high pt particles** inside the jet cone. Relatively stronger picture with $\xi_{\text{T}}\text{?}$.

BACKUP

Results – ξ jet : 30-100%, 0-30%

CMS-PAS HIN-16-014

Perform measurement with coarser centrality binning

Increased significance

Results – ξ^T γ : 30-100%, 0-30%

CMS-PAS HIN-16-014

Perform measurement with coarser centrality binning

Increased significance

Signal Photon

Identify signal photons by :

- Isolation requirement based on calorimeter deposits and tracks
- Extract fraction of signal photons based on shower shape

ξ jet phase space

In general the mapping depends on **η jet** , **η trk** and **ΔR (jet, trk)**. The solid and dashed lines are the extreme cases for a given η^jet .

ξ jet phase space

If **ΔR (jet, trk) = 0**, then the mapping becomes **η-indep**.

ξT γ phase space

The mapping depends on **Δφ (γ, trk)**.

Phase space for $\xi_{_{\rm T}}$ **γ** tends to be narrower than for ξ jet because **η** info is not used.

ШĦ

ξT γ phase space

The **Δφ (γ, trk) = π** case of ξ T α ^γ gives the same relation as the **ΔR (jet, trk) = 0** case of ξ^{jet} .

Q/G Fraction of Dijet and Photon+Jet

- Dijet has relatively larger fraction of gluon jets compared to photon+jet.
- Gluon fraction for photon+jet increases with p_{τ} .

Photon+Jet Correlations - <Xjg>

CMS-PAS HIN-16-002

Photon+Jet Correlations - <Rjg>

CMS-PAS HIN-16-002

Photon+Jet Correlations - <dphijg>

CMS-PAS HIN-16-002

Mii

deta (photon,jet)

- Distribution of rapidity difference, y_{dif} , between the photon and the jet, normalized to unity.
- Photon and jet does not necessarily share the same rapidity.
- **•** Distribution decreases linearly with y_{dif} .

[PRD 88 \(2013\) 112009](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.112009)

Number of charged particles inside jet

For 50 $< p_T^{\text{jet}} <$ 300 GeV range,

- there are 8-13 ch. with $p_T^{\text{trk}} > 0.5$ GeV
- there are 5-10 ch. with $p_T^{trk} > 2$ GeV inside the jet.

Smearing jet spectra

- **Jet energy resolution** and **jet angular resolution** differ between pp and PbPb due to underlying event, so
	- Estimate relative resolution between pp and PbPb using simulations
	- Smear jet spectra in pp using this relative resolution
- **Smearing jet energy**
	- Parametrize jet energy resolution via

$$
\sigma \left(\frac{p_T^{RECO}}{p_T^{GEN}} \right) = \sqrt{C^2 + \frac{S^2}{p_T^{GEN}} + \frac{N^2}{(p_T^{GEN})^2}}
$$

Fit C, S and N parameters and apply relative resolution via

$$
\sigma_{rel} = \sqrt{(C_{PbPb}^2 - C_{pp}^2) + \frac{(S_{PbPb}^2 - S_{pp}^2)}{p_T^{GEN}} + \frac{(N_{PbPb}^2 - N_{pp}^2)}{(p_T^{GEN})^2}}
$$

- **Smearing jet azimuthal angle**
	- Use same parametrization as in jet energy resolution $σ(|φ^{RECO}−φ^{GEN}|) = √C^2 +$
	- Apply relative resolution in the same fashion

S 2

 $\frac{1}{GEN}$ +

N 2

 $(p_T^{\mathit{GEN}})^2$

 $p_{\,T}^{\,\text{\tiny G}}$