Photon-tagged Jet Fragmentation Functions in pp and PbPb Collisions at 5.02 TeV with CMS

Kaya Tatar Massachusetts Institute of Technology *for the CMS Collaboration*

5th Heavy-Ion Jet Workshop, CERN August 22, 2017

Introduction

- The fragmentation pattern of a high energy parton is predicted and measured to be modified in A+A collisions.
- Jet fragmentation function (FF)
 - Info about longitudinal distribution of the momentum
 - Separate energy loss models
 - Sensitive to hadronization

Kava Tatar

2

FF at LHC and RHIC so far

- jet+hadrons FF (at LHC)
- take hadrons inside the jet cone
- project p_T^h (or p^h) onto jet axis
- look at the fraction in p_T^{jet} (or p^{jet})

- photon-hadrons FF (at RHIC), no reconstructed jets
- take hadrons away from the triggering object (photon)
- look at the fraction of hadron p_{T} in photon p_{T}

Jet based FF at LHC - CMS

PRC 90 (2014) 024908

Ζ=

4

njet

enhancement for ch. particles with 1 < pT < 3 GeV/c, $\xi > 3.5$ Small depletion in the intermediate pT range, $2 < \xi < 3$

jet

Jet based FF at LHC - ATLAS

Photon based FF at RHIC

- No significant modification in d+Au
- Modification in Au+Au
 - suppression at small ξ (large p_T^h)
 - enhancement at large ξ (small $p_{_{\!\!\!\!\!\!\!\!\!}}^{^h})$

Joe Osborn @ QM 2017

Jet FF with Dijets

Jet based FF measurements up to now were made with dijet samples.

- Pro : High statistics
- Con : Comparison is based on reconstructed jets (after suffering quenching).
 No control over initial kinematics

Jet FF with Photon+jet

One can **constrain the initial parton kinematics** if one of the hard scatterers is a **photon**. 5 TeV data set is large enough to perform this type of measurement.

Motivation : understand QCD properties of the medium via longitudinal modification of parton shower

Goal : Measure jet FF in isolated-photon+jet events in PbPb and compare to pp

Observables - ξ^{jet}

- Take tracks inside the jet cone.
- Project the track momentum to jet axis.
- Divide jet momentum by the projected track momentum.
- The natural log of this ratio is called ξ^{jet} .

Observables - ξ_{τ}^{γ}

- Take tracks inside the jet cone.
- Construct transverse momentum vectors for track and photon
- Invert the track transverse momentum
- Follow the same logic as for ξ^{jet} .

 $\xi_T^{\gamma} = \ln \frac{-|\mathbf{p}_T^{\gamma}|^2}{\mathbf{p}_T^{trk} \cdot \mathbf{p}_T^{\gamma}} \qquad \begin{array}{l} \mathbf{p}_T^{\gamma} : \text{transverse momentum vector of the photon} \\ \mathbf{p}_T^{trk} \cdot \mathbf{p}_T^{\gamma} & \mathbf{p}_T^{trk} : \text{transverse momentum vector of the track} \end{array}$

Observables

$$\xi^{\text{jet}} = \ln \frac{|\mathbf{p}^{\text{jet}}|^2}{\mathbf{p}^{\text{trk}} \cdot \mathbf{p}^{\text{jet}}}$$

- Based on reconstructed jet energy
- Measured previously, eg.

$$\mathbf{f}_{T}^{\gamma} = \ln \frac{-|\mathbf{p}_{T}^{\gamma}|^{2}}{\mathbf{p}_{T}^{\mathrm{trk}} \cdot \mathbf{p}_{T}^{\gamma}}$$

- Based on **photon energy**, proxy for the parton energy before jet quenching.
- Measured for the first time for reconstructed jets
 - only theoretical calculations so far
- ξ^{jet} and ξ_{τ}^{γ} are measured together for the first time.

5th Heavy-Ion Jet Workshop

Object Selections

Photons	Jets	Tracks	JHEP 04 (2017) 039
p _T ^γ > 60 GeV/c	anti-kT, R=0.3	$p_{T} > 1 \text{ GeV/c}$	
 η^γ < 1.44	p _T ^{jet} > 30 GeV/c	η ^{trk} < 2.4	
	η ^{jet} < 1.6	$\Delta R(jet, track) < 0.3$	
	$\Delta \phi$ (photon, jet) > 7 π /8	Bkg tracks subtracted via	
	inclusive jets, bkg jets subtracted via MB event mixing	MB event mixing	

Analysis

• Observables are constructed using photons, jets and tracks.

Background sources

Subtracted via Min Bias event mixing Tracks from underlying event Mis-identified (fake) jets

Analysis

• Observables are constructed using photons, jets and tracks.

14

Neutral meson decay

 $h^0 \rightarrow \gamma \gamma$

Background source

photons from neutral meson decays

- rejected with shower shape cut
- 2 photons are reconstruced as single with a **wider shower shape**
 - dominates the sideband region : 0.011 < $\sigma_{_{\rm nn}}$ < 0.017

Energy weighted width of shower : σ_{nn}

$$\sigma_{\eta\eta}^{2} = \frac{\sum_{i}^{5\times5} w_{i}(\eta_{i} - \eta_{5\times5})^{2}}{\sum_{i}^{5\times5} w_{i}}, \qquad w_{i} = \max(0, 4.7 + \ln\frac{E_{i}}{E_{5\times5}})$$

CMS-PAS-HIN-16-002

5th Heavy-Ion Jet Workshop

Background from photons

- $\sigma_{\eta\eta}$ < 0.01 selects narrow shower shape, supresses background from neutral meson decays, however there is still contamination.
- Purity = fraction of the prompt photons among candidates
 - Estimated using template fit method. Fit the distribution for $\sigma_{\eta\eta}$ < 0.01 with

Signal (prompt photon) template from MC with isolated photon events Bkg (neutral meson) template from non-isolated photons in data

Smearing jet spectra

- Jet energy resolution and jet angular resolution differ between pp and PbPb due to underlying event
 - Estimate relative resolution between pp and PbPb using simulations
 - Smear jet spectra in pp using this relative resolution
- Smearing jet energy
 - Parametrize jet energy resolution via

$$\sigma\left(\frac{p_T^{RECO}}{p_T^{GEN}}\right) = \sqrt{C^2 + \frac{S^2}{p_T^{GEN}} + \frac{N^2}{(p_T^{GEN})^2}}$$

- Fit C, S and N parameters and apply relative resolution via

$$\sigma_{rel} = \sqrt{(C_{PbPb}^2 - C_{pp}^2) + \frac{(S_{PbPb}^2 - S_{pp}^2)}{p_T^{GEN}} + \frac{(N_{PbPb}^2 - N_{pp}^2)}{(p_T^{GEN})^2}}$$

Smearing jet azimuthal angle

Kava Tatar

- Use same parametrization as in jet energy $\sigma(|\phi^{RECO} \phi^{GEN}|) = \sqrt{C^2 + \frac{S^2}{p_T^{GEN}} + \frac{N^2}{(p_T^{GEN})^2}}$
- Apply relative resolution in the same fashion

16

BKG subtraction for jets and tracks

isolated-photon+jet event

MB event

- MB event mixing technique
 - Estimate the bkg from fake jets and bkg tracks by constructing the observable using jets and tracks in matching MB events
- For each signal event find MB events with very close
 - centrality bin
 - vertex position in z-direction
 - event plane angle

Analysis steps – bkg tracks

isolated-photon+jet event

MB event

Analysis steps – bkg jets

MB event

BKG subtraction – tracks and jets

🔀 Kaya Tatar

5th Heavy-Ion Jet Workshop

Analysis steps - photons

Results - ξ^{jet}

CMS-PAS HIN-16-014

In central collisions, ξ^{jet} in PbPb is modified suggesting an **enhancement of low energy particles** and a **depletion of high energy particles**. Peripheral PbPb is consistent with pp.

Kaya Tatar

1111

CMS-PAS HIN-16-014

Results - ξ^{jet}

5th Heavy-Ion Jet Workshop

Miī

23

Kaya Tatar

Results - ξ_{T}^{γ}

CMS-PAS HIN-16-014

of high energy particles. More significant than ξ^{jet} . Peripheral PbPb is consistent with pp.

Kaya Tatar

5th Heavy-Ion Jet Workshop

1111

CMS-PAS HIN-16-014

Results - ξ_{τ}^{γ}

CMS-PAS HIN-16-014

Results - ξ^{jet}

26

- Based on reconstructed jet energy (energy after quenching)
- Jets are tagged by photon.

Kaya Tatar

- General shift to left compared to ξ_{τ}^{γ} ٠
 - Out-of-cone radiation, photon+>1 jet , quenching in PbPb

- Based on initial parton energy
- Modification is relatively stronger.
- Centrality dependence is more clear.

Summary

•FF of jets associated with isolated-photons is measured for the first time in pp and PbPb collisions.
•Selection based on isolated photon provides helps tagging the initial parton kinematics.

*Study is done using jet momentum based and photon momentum based FF observables : $\xi^{
m jet}$ and $\xi_{
m T}{}^{\gamma}$

•For both ξ^{jet} and ξ_T^{γ} , distributions in central collisions are modified indicating an excess of low pt particles and a depletion of high pt particles inside the jet cone. Relatively stronger picture with ξ_T^{γ} .

BACKUP

Results – ξ^{jet} : 30-100%, 0-30%

CMS-PAS HIN-16-014

Perform measurement with coarser centrality binning

Increased significance

Results – ξ_{T}^{γ} : 30-100%, 0-30%

CMS-PAS HIN-16-014

Perform measurement with coarser centrality binning

Increased significance

Signal Photon

Identify signal photons by :

- Isolation requirement based on calorimeter deposits and tracks
- Extract fraction of signal photons based on shower shape

31

ξ^{jet} phase space

In general the mapping depends on η^{jet} , η^{trk} and ΔR (jet, trk). The solid and dashed lines are the extreme cases for a given η^{jet} .

$\boldsymbol{\xi}^{\text{jet}}$ phase space

If ΔR (jet, trk) = 0, then the mapping becomes η -indep.

Miī

ξ_{T}^{γ} phase space

The mapping depends on $\Delta \phi$ (γ , trk).

Phase space for ξ_{τ}^{γ} tends to be narrower than for ξ^{jet} because **η** info is not used.

Miī

ξ_{T}^{γ} phase space

The $\Delta \phi$ (γ , trk) = π case of ξ_{τ}^{γ} gives the same relation as the ΔR (jet, trk) = 0 case of ξ^{jet} .

Q/G Fraction of Dijet and Photon+Jet

- Dijet has relatively larger fraction of gluon jets compared to photon+jet.
- Gluon fraction for photon+jet increases with p_{τ} .

Photon+Jet Correlations - <Xjg>

CMS-PAS HIN-16-002

Photon+Jet Correlations - <Rjg>

CMS-PAS HIN-16-002

Photon+Jet Correlations - <dphijg>

CMS-PAS HIN-16-002

Шiī

deta (photon,jet)

- Distribution of rapidity difference, y_{dif}, between the photon and the jet, normalized to unity.
- Photon and jet does not necessarily share the same rapidity.
- Distribution decreases linearly with y_{dif}.

PRD 88 (2013) 112009

Number of charged particles inside jet

For $50 < p_{\tau}^{jet} < 300$ GeV range,

- there are 8-13 ch. with $p_{\tau}^{trk} > 0.5 \text{ GeV}$
- there are 5-10 ch. with $p_{_{T}}{}^{\rm trk}$ > 2 GeV inside the jet.

Smearing jet spectra

- Jet energy resolution and jet angular resolution differ between pp and PbPb due to underlying event, so
 - Estimate relative resolution between pp and PbPb using simulations
 - Smear jet spectra in pp using this relative resolution
- Smearing jet energy
 - Parametrize jet energy resolution via

$$\sigma\left(\frac{p_T^{RECO}}{p_T^{GEN}}\right) = \sqrt{C^2 + \frac{S^2}{p_T^{GEN}} + \frac{N^2}{(p_T^{GEN})^2}}$$

Fit C, S and N parameters and apply relative resolution via

$$\sigma_{rel} = \sqrt{(C_{PbPb}^2 - C_{pp}^2) + \frac{(S_{PbPb}^2 - S_{pp}^2)}{p_T^{GEN}} + \frac{(N_{PbPb}^2 - N_{pp}^2)}{(p_T^{GEN})^2}}$$

42

- Smearing jet azimuthal angle
 - Use same parametrization as in jet energy resolution $\sigma \left(|\phi^{RECO} \phi^{GEN}| \right) = \sqrt{C^2 + \frac{S^2}{p_T^{GEN}} + \frac{N^2}{(n_T^{GEN})^2}}$
 - Apply relative resolution in the same fashion