Probing medium-induced jet splitting and energy loss in heavy-ion collisions

Ning-Bo Chang

Xinyang Normal University Central China Normal University

Collaborators: **Shanshan Cao** and **Guang-You Qin** arXiv:1707.03767

Outline

- ◆ Motivation and Framework
- ◆ Non-monotonic jet energy dependence of the nuclear modification to jet splitting function
- \triangle Effect of coherent vs. incoherent energy loss
- ◆ Summary and Outlook

Why to study groomed jet substructures

- Theory calculations (e.g. higher twist) provides mediummodified splitting functions in heavy-ion collisions
- Phenomenological studies [JETSCAPE talk on Wednesday] put these splitting functions in either *DGLAP evolution equation* or rate equation of transport models and calculate R_{AA} , v_2 etc and compare to data.

DGLAP evolution for parton fragmentation function:

$$
\frac{\partial}{\partial Q^2}D(z,Q^2) = \frac{\alpha_s}{2\pi} \frac{1}{Q^2} \int_z^1 \frac{dy}{y} P(y) D\left(\frac{z}{y}, Q^2\right)
$$

Transport model (scattering rate):

$$
\Gamma^{\rm inel} = \langle N_g \rangle (E, T, t, \Delta t) / \Delta t = \int dx dk_\perp^2 \frac{dN_g}{dx dk_\perp^2 dt}
$$

3

Indirect test of theory calculation of the splitting functions.

Softdrop jet grooming algorithm

Anti- k_T jet is clustered with Cambridge/Aachen (CA) Then decluster the angular-ordered CA tree Drop soft branches

 $\frac{\min(p_{\text{T}1}, p_{\text{T}2})}{p_{\text{T}1} + p_{\text{T}2}} \equiv z_g > z_{\text{cut}}$

4

Larkoski, Marzani, Thaler, Phys. Rev. D91,111501 (2015) Soft Drop: JHEP 1405 (2014) 146

"Puzzle" in CMS vs. STAR measurements

Framework of theoretical calculation

$$
p_i(z_g) = \frac{\int_{k_{\Delta}^2}^{k_{\rm R}^2} dk_{\perp}^2 \overline{P}_i(z_g, k_{\perp}^2)}{\int_{z_{\rm cut}}^{1/2} dx \int_{k_{\Delta}^2}^{k_{\rm R}^2} dk_{\perp}^2 \overline{P}_i(x, k_{\perp}^2)}
$$
\n
$$
\overline{P}_i(x, k_{\perp}^2) = \sum_{j,l} \left[P_{i \to j,l}(x, k_{\perp}^2) + P_{i \to j,l}(1 - x, k_{\perp}^2) \right]
$$
\n
$$
\overline{P}_i(x, k_{\perp}^2) = \sum_{j,l} \left[P_{i \to j,l}(x, k_{\perp}^2) + P_{i \to j,l}(1 - x, k_{\perp}^2) \right]
$$
\n
$$
\overline{P}_i(x, k_{\perp}^2) = \sum_{j,l} \left[P_{i \to j,l}(x, k_{\perp}^2) + P_{i \to j,l}(1 - x, k_{\perp}^2) \right]
$$
\n
$$
\overline{P}_i(x, k_{\perp}^2) = \sum_{j,l} \overline{P}_i(x, k_{\perp}^2) + \sum_{j,l} \overline{P}_i(x, k_{\perp}^2)
$$

$$
P_i(x, k_\perp^2) = P_i^{\text{vac}}(x, k_\perp^2) + P_i^{\text{med}}(x, k_\perp^2)
$$

$$
P_i^{\text{med}}(x, k_\perp^2) = \frac{2\alpha_s}{\pi k_\perp^4} P_i^{\text{vac}}(x) \int d\tau \hat{q}_g(\tau) \sin^2\left(\frac{\tau}{2\tau_f}\right)
$$

Guo,Nucl.Phys.A696, 788(2001) A. Majumder, Phys.Rev.D85,01402 3(2012)

$$
p^{\text{obs}}(z_g) = \frac{1}{\sigma_{\text{total}}} \sum_{j=q,g} \int d^2 X \mathcal{P}(\vec{X}) \int_{p_{\text{T},1}^{\text{ini}}=p_{\text{T},1}^{\text{obs}}+\Delta E_1}^{p_{\text{T},2}^{\text{ini}}=p_{\text{T},1}^{\text{obs}}+\Delta E_2} dp_{\text{T}}^{\text{ini}} \frac{d\sigma_j}{dp_{\text{T}}^{\text{ini}}} p_j(z_g|p_{\text{T}}^{\text{ini}})
$$

$$
\Delta E = \int dx dk_{\perp}^2(xE) \overline{P}^{\text{med}}(x,k_{\perp}^2)\theta(\frac{1}{2}-x)\theta(k_{\perp}-k_R)
$$

Comparison with CMS data

Comparison with STAR data

There are non-monotonic jet energy dependence both in experimental data and in theory!

Endpoints of the nuclear modification factor.

Source of the Non-monotonic behavior: I

Source of the Non-monotonic behavior: II

Probing coherent vs. incoherent energy loss of subjets

Figure taken from *Phys. Lett. B* **725** (2013) 357-360

Transverse separation:

$$
r_{\perp} = \theta \tau_f = \theta \frac{2Ex(1-x)}{k_{\perp}^2} = \theta \frac{1}{2Ex(1-x)\tan(\frac{\theta}{2})^2}
$$

Transverse wavelength:

$$
\lambda_{\perp} = \frac{1}{k_{\perp}} = \frac{1}{2Ex(1-x)\tan(\frac{\theta}{2})}
$$

Median transverse $\Lambda_{med} = \frac{1}{\hat{q}L}$
resolution scale:

Effect of the incoherent energy loss

- Within HT, parton with larger energy loses smaller fractional energy through the medium.
- Z_g shifts to smaller value due to subjets incoherent energy loss.

 Z_g shifts to smaller value due to subjets incoherent energy loss. But $p(Z_g)$ at small Z_g is not necessarily enhanced. The shape of $p(Z_g)$ can be flattened instead.

Effect of the incoherent eLoss on vac $P(z)$

15 Applying IEL effect $(z_g \text{ shift effect})$ on the pure vacuum splitting function leads to an enhancement of the medium modification factor at large z_g .

Effect of the incoherent energy loss

Applying IEL on medium-modified splitting, the non-monotonic behavior disappears.

- Experimental data favor the CEL picture.
- One should interpret this conclusion with care: IEL vs. CEL depends on the jet energy, and the choice of R and ΔR.

Summary and outlook

- \Diamond Two factors of the medium induced splitting function render the non-monotonic nuclear modification to the groomed jet splitting function.
- \Diamond Measurements with wider p_T range at RHIC and the LHC can test our finding.
- \diamond CMS and STAR data favor coherent energy loss picture (within current kinematics)
- !Measurements with varying the jet cone size and the angular separation between the two subjets can detect the effect of incoherent energy loss.

Effect of the incoherent energy loss

Comparison with CMS data of mid-central collision

$$
\mathcal{P}_{q\to qg}^{vac} = \frac{\alpha_s(\mu)}{\pi} C_F \frac{1 + (1 - x)^2}{x} \frac{1}{k_\perp},
$$
\n
$$
\mathcal{P}_{q\to qg}^{vac} = \mathcal{P}_{q\to qg}^{vac}(x \to 1 - x),
$$
\n
$$
\mathcal{P}_{g\to q\bar{q}}^{vac} = \frac{\alpha_s(\mu)}{\pi} T_F n_f \left[x^2 + (1 - x)^2 \right] \frac{1}{k_\perp},
$$
\n
$$
\mathcal{P}_{g\to qg}^{vac} = \frac{\alpha_s(\mu)}{\pi} C_A \left[\frac{1 - x}{x} + \frac{x}{1 - x} + x(1 - x) \right] \frac{1}{k_\perp}
$$
\n
$$
\Delta E = \int dx dk_\perp^2(xE) \overline{P}^{\text{med}}(x, k_\perp^2) \theta \left(\frac{1}{2} - x \right) \theta(k_\perp - k_R)
$$
\n
$$
\mathbf{E} = \int \frac{1}{2} \mathbf{E} \mathbf{E} \left[\mathbf{E} \mathbf{E} \right] \mathbf{E}^{\text{med}}(x, k_\perp^2) \theta \left(\frac{1}{2} - x \right) \theta(k_\perp - k_R)
$$

Effect of the incoherent energy loss

