A Large Ion Collider Experiment

Mexico and the ALICE Experiment

F Antinori

24 March 2017

Ultrarelativistic Nuclear Collisions

basic idea: compress large amount of energy in small volume

→ produce a "fireball" of hot matter:

temperature O(10¹² K)

- $\sim 10^5 \text{ x T}$ at centre of Sun
- $\sim T$ of universe @ $\sim 10 \mu s$ after Big Bang
- extreme conditions: how does matter behave?
 - \rightarrow study the fireball properties
 - deconfined QCD medium(Quark-Gluon Plasma, QGP)
 - predicted by QCD
 - evidence for QGP already at lower energy (CERN-SPS, BNL-RHIC)
 - LHC: high statistics and controlled probes
 - \rightarrow quantitative study of properties of QCD medium
 - viscosity, opacity, transport, diffusion, ...

The ALICE Experiment

- Two main parts:
 - barrel (|η|<0.9), B = 0.5 Tesla
 - muon spectrometer, -4<η<-2.5
- High precision reconstruction:
 - low material tracking
 - high res. vertexing
 - hadron and lepton ID
- Triggers:
 - minimum-bias (MB)
 - or centrality, in Pb-Pb
 - single and di-muon
 - EMCAL, high-mult., UPC
 - TRD
- Collisions systems (so far) : Pb-Pb, pp, p-Pb, Pb-p

THE ALICE Collaboration

42 COUNTRIES – 174 INSTITUTES – 162'518 KCHF CAPITAL COST

THE ALICE COLLABORATION

History of the ALICE Experiment:

1990-1996 Design

1992-2002 R&D

2000-2010 Construction

2002-2007 Installation

- 2008 -> Commissioning
- 4 TP addenda along the way: 1996 Muon spectrometer 1999 TRD 2006 EMCAL 2007 DCAL
- 2012 Lol for the Upgrade

2012-2014 R&D

- 2014-2016 Procurement/Fabrication
- 2016-2017 Integration, pre-commissioning
- 2018-2019 Installation, commissioning
- 2019-2020 Full deployment of DAQ/HLT

PARTICIPATING INSTITUTES (1992-2016)

Number of participating institutes in ALICE

High scientific impact

- major scientific output
 - 177 ALICE papers on arXiv
 - high-impact papers (average of ~80 citations per paper): the top cited papers at the LHC after the Higgs discovery ones are HI physics papers (source: ISI).
 - several hundred presentations at international conferences each year

MEXICO MEMBERS (source: ALICE Collaboration database, March 2017)

45 COLLABORATORS INCLUDING 15 PHD STUDENTS

UNIVERSIDAD AUTONOMA DE SINALOA INSTITUTO DE FISICA, UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO Other Categories Other Students INSTITUTO DE CIENCIAS NUCLEARES, UNIVERSIDAD NACIONAL 4 **AUTONOMA DE MEXICO** PhD Student Scientists **CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS** (CINVESTAV) BENEMERITA UNIVERSIDAD AUTONOMA DE PUEBLA

COLLABORATORS BY INSTITUTE AND BY STATUS

Main Mexican Contributions

- V0 and AD (CINVESTAV, UNAM, UAS)
 - forward scintillator arrays
 - trigger, luminosity, centrality, event plane
- ACORDE (A COsmic Ray DEtector) (BUAP, CINVESTAV, ICN, UAS)
 - calibration triggers
 - multi-muon trigger for cosmic-ray physics (muon bundles)
- Computing (UNAM, DGTIC)
 - Tier 2 (1024 cores, 570 TB), Tier 1 in preparation
 - pioneered GRID computing in Mexico, ICN now leading the computing for HAWC
- Data Analysis (all)
 - coordination of Physics Analysis Groups
 - A Ortiz (UNAM): LF-Spectra; A Fernández (BUAP): UD-Cosmics
 - Editorial Board (G Paic)
 - identified particle production (up to nuclei)
 - fluctuations
 - ultraperipheral collisions
 - high multiplicity, event shape in pp
 - cosmic rays

LHC Heavy Ion Timeline

- Run 2:
 - − Pb-Pb: 1/nb, at $\sqrt{s_{NN}}$ = 5 TeV
 - p-Pb at 5 and 8 TeV (increased luminosity)
 - pp reference at Pb-Pb energy (5 TeV)
- LS2:
 - LHC injector upgrades; bunch spacing (likely) reduced to 25 ns
 - Pb-Pb interaction rate may exceed 50 kHz (now <10 kHz)
 - Experiments upgrades (LS2 and LS3)
- Runs 3+4:
 - Experiments request for Pb-Pb: >10/nb (ALICE: 10/nb at 0.5T + 3/nb at 0.2T)
 - In line with latest projections by the machine group (Chamonix 2016, 2017)

ALICE upgrade programme

- Run 1 + Run 2 (ongoing)
 - wide-band exploration of QGP features
 - comprehensive study of identified particle production, correlations, jets, ...
 - first measurement of mass-dependence of in-medium energy loss
 - discovery of new regime for charmonium production (\rightarrow regeneration)
 - discovery of collective effects in p-Pb, pp collisions
 - + diffractive and cosmic physics
- Run 3 + Run 4 (plans)
 - understand dynamics of quark interaction with medium
 - energy loss, hadronisation with "calibrated" probes
 - \rightarrow high statistics charm and beauty studies at low ${\rm p_T}$
 - high statistics study of suppression and regeneration of quarkonia
 → high statistics charmonia down to zero p_T
 - study of QGP radiation, thermal evolution of the medium
 → thermal dileptons

- New Inner Tracking System (ITS)
 - Improved resolution, less material, faster readout

- Improved resolution, less material, faster readout
- New Forward Muon Tracker (MFT)
 - HF vertices also at forward rapidity

- Improved resolution, less material, faster readout
- New Forward Muon Tracker (MFT)
 - HF vertices also at forward rapidity
- New TPC Readout Chambers
 - 4-GEM detectors

- Improved resolution, less material, faster readout
- New Forward Muon Tracker (MFT)
 - HF vertices also at forward rapidity
- New TPC Readout Chambers
 - 4-GEM detectors
- New trigger detectors (FIT, AD)
 - + centrality, event plane

- improved resolution, less material, faster readout
- New Forward Muon Tracker (MFT)
 - HF vertices also at forward rapidity
- New TPC Readout Chambers
 - 4-GEM detectors
- New trigger detectors (FIT, AD)
 - + centrality, event plane
- Upgraded read-out for TOF, TRD, MUON, ZDC, EMCal, PHOS, integrated Online-Offline system (O²)
 - record minimum-bias Pb-Pb data at 50 kHz (currently <1 kHz)

Mexico and the ALICE Upgrades

- CINVESTAV (G Herrera, I León)
 - AD detector
- ICN-UNAM (G Paic, M Enrique)
 - TPC upgrade (currents monitoring)
- IF-UNAM (A Menchaca, V Grabski, R Alfaro, A Sandoval)
 - V0+ detector (FIT)
- BUAP (A Fernández, M Rodríguez, M Martínez, G Tejeda,

A Vargas, S Vergara, R Camacho)

- TPC upgrade (currents monitoring)
- AD detector
- Central Trigger Processor

actividades del equipo mexicano

Análisis de datos

2017