NP05 (Baby MIND) Introduction Hardware update Physics simulations Schedule and logistics Summary

NP05 (Baby MIND) status report

Etam NOAH (UniGe) - Baby MIND Collaboration

April 4, 2017

NP05 (Baby MIND) Introduction

T2K

Muon spectrometry at WAGASCI Project status at CERN Neutrino Platform

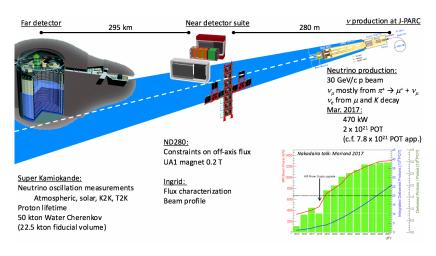
Hardware update

Magnet modules Scintillator modules Cable bundles Electronics Mechanics support frames

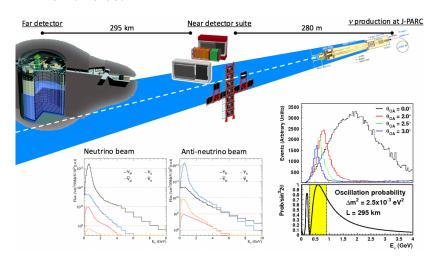
Physics simulations

Software environments Lever Arm Event topologies

Schedule and logistics


Project timeline
Beam tests at CERN

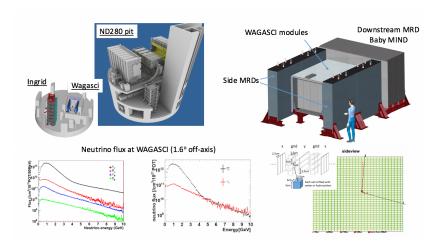
Summary


Summary

T2K experiment overview

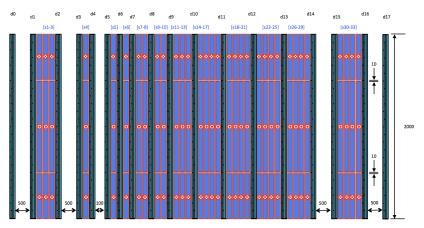
Summary

T2K off-axis beam



Motivation for Baby MIND at WAGASCI

- Current T2K setup:
 - ▶ Far detector (SK) is H_2O with 4π acceptance.
 - Near detector (ND280) is plastic (CH), its acceptance is forward scattering.
 - ightharpoonup Systematic error sources are dominated by ν flux and cross-section non-constrained by the ND280.
- Hence motivation for measurement of H₂O/CH ratio with large polar angle at WAGASCI (approved experiment T59 at J-PARC).
- Magnetized muon spectrometer required to tell the charge of muons, especially in anti-neutrino beam mode where wrong-sign contamination in the beam is up to 30%.



WAGASCI (T59 experiment) at J-PARC

Baby MIND layout

- ▶ Magnet module thickness: 50 mm (30 mm Fe) (envelope: 60 mm).
- Detector module thickness: 38 mm (31 mm CH).

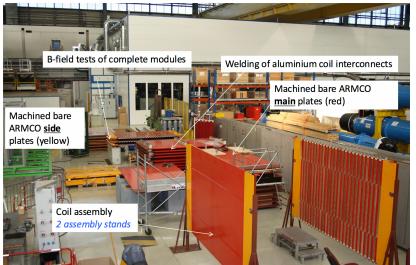
Project status at CERN Neutrino Platform

- NP05 Baby MIND is a CERN Neutrino Platform experiment, approved as such by the CERN Research Board on 9 December 2015, following 22 October 2015 recommendations by the SPSC.
- CERN contributes magnet modules, engineering, test beam support.
- SPSC recommendation to use an existing low-energy optimised beamline for beam tests at CERN, PS (initial plans had been for SPS).

Magnet modules Scintillator modules Cable bundles Electronics Mechanics support frames

Baby MIND hardware status

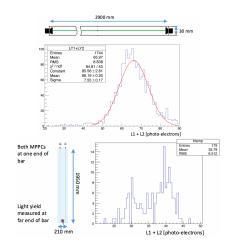
	Design		Prototyping		Production	
	04/2016	04/2017	04/2016	04/2017	04/2016	04/2017
Magnet modules						
Standard steel plates	✓	N/A	✓	N/A	N/A	N/A
ARMCO plate machining	×	✓	×	✓	×	✓
Coil engineering	✓	✓	✓	✓	×	✓
Magnet module assembly	✓	✓	✓	✓	×	✓
Scintillator modules						
Scintillator bars	✓	✓	✓	✓	✓	✓
Scintillator module mechanics	×	✓	×	✓	×	✓
Scintillator module assembly	×	✓	×	✓	×	✓
Cable bundles						
Cable selection	×	✓	×	✓	×	✓
HV Coax PCB	×	✓	×	✓	×	✓
FEB Coax PCB	×	✓	×	✓	×	✓
Cable bundle assembly	×	✓	×	✓	×	✓
Electronics modules						
FEBv1	✓	✓	✓	✓	×	×
FEBv2	×	✓	×	✓	×	✓
Backplane	×	✓	×	✓	×	✓
Master Clock Board	×	✓	×	×	×	×
Minicrate mechanics	×	✓	×	✓	×	✓
Mechanics						
Support frame #1	×	✓	×	✓	×	✓
Support frame #2	×	✓	×	✓	×	✓
Support frame #3	×	\checkmark	×	✓	×	✓
Support frame #4	×	✓	×	√	×	_


Magnet module concept

- Design principles:
 - Individually magnetized iron (ARMCO) plates.
 - Two-slit design.
 - Well defined B-field lines in central zone: B = B_x.
 - Contained stray fields.
 - Modularity and flexibility.
- Dimensions:
 - → 3500 × 2000 × 30mm³.
 - 10 mm wide slits (water jet).
 - ▶ 10 mm-thick flux return plates ×4.
 - Aluminium coil: 50 mm wide × 4 mm thick: half-turns.
- Test measurements.
 - Field > 1.5 T for coil current ~ 140 A
 - Power for all 33 modules: 12 kW

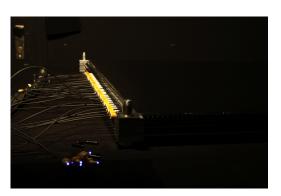
Magnet modules Scintillator modules Cable bundles Electronics Mechanics support frames

Magnet module assembly: all 33 modules complete

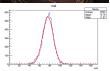


Scintillator bar production

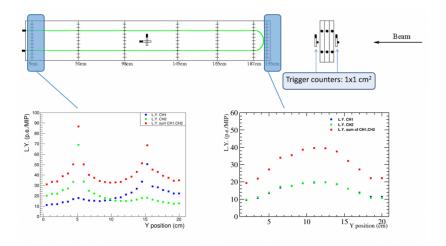
- Design and production by
 - INR:
 - Polysterene based, 1.5 % PTP, 0.01% POPOP.
 - Reflective coating 30 to 100 μm from chemical etching of surface.
 - Kuraray WLS fiber (200 ppm, S-type), dia 1.0 mm.
 - Elien EJ-500 optical cement.
 - Custom optical connector.
- Delivery schedule


INR-CERN:

- First batch delivered March 2016.
- Second batch delivered November 2016.

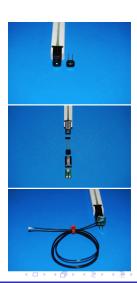


Test system with LED driver from Sofia

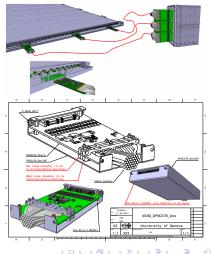

- Every sci. bar is tested at INR before shipping with cosmic ray setup.
- Every sci. bar is tested at CERN after shipping with LED setup.

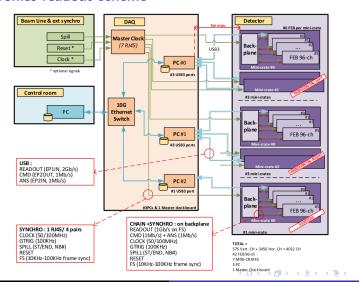
Beam tests at T9 summer 2016: vertical bars

Scintillator module assembly


- Two half-modules assembled separately.
- Each half-module: 1 horizontal + 1 verticalplane:
 - 95 horizontal bars: 3000 x 31 x 7.5 mm³
 8 vertical bars: 1950 x 210 x 7.5 mm³
- Scintillators held together mechanically (no glue) within aluminium support frame.

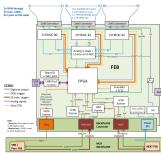
Photosensors and connectivity


- Photosensor characteristics:
 - Hamamatsu MPPC S12571-025C (and derived S10943-5796).
 - ▶ $1 \times 1 \text{ mm}^2$ (65% fill factor).
 - \triangleright 25 μ m cell size.
 - ▶ Operating voltage ~ 67.5 V.
 - ▶ PDE ~ 35%.
 - ▶ Gain 5 × 10⁵.
 - Dark counts 100 kcps typ.
- Custom connectors.
 - Designed by INR.
 - Alignment of MPPC and coupling to WLS fiber.
 - Small pcb with UFL connector.
 - Coax cable: I-PEX 0.5 m length to cable bundle.

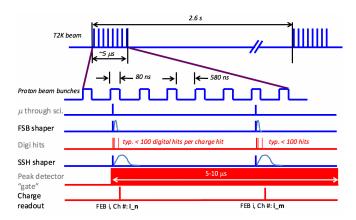

Magnet modules Scintillator modules Cable bundles **Flectronics** Mechanics support frames

Cable bundles

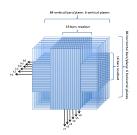
- Design principle:
 - Decouple electronics Front End Boards from scint. modules
 - Better accessibility and maintainability.
 - 5 m extension between photosensors and FEB.
 - No amplification before FEB.
 - Control of MPPC HV ch-by-ch on bundle PCB close to scint. module
- Production Timeline:
 - Option chosen October 2016.
 - Validation December 2016
 - Production April 2017.



Electronics readout scheme


Custom electronics Front End Board

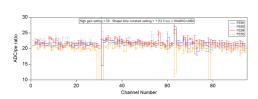
- Features of the Front End Board:
 - Rack mounted.
 - ×3 32-ch connectors.
 - 3 CITIROC ASICs 32-ch.
 - ▶ 12-bits 8-ch 40 MS/s/ch ADC.
 - Altera ARIA5 FPGA.
 - Timing: 400 MHz sampling.
 - Analog readout: 8μs for 96-ch L-Gain and H-Gain.
 - HV, ASIC T + board T + RH%.
 - Readout/Slow control on USB3 and /or Gigabit RJ45 chain.
 - External propagated Trig/sync. signal.
 - Power supplies (HV/LV).
- Firmware and DAQ:
 - ► Analog readout + slow control on USB.
 - Platform independent readout. Windows/Linux.

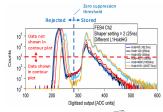

CITIROC peak detector gate

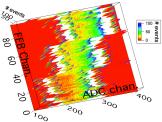
Magnet modules Scintillator modules Cable bundles Electronics Mechanics support frames

Beam tests at T9 summer 2016

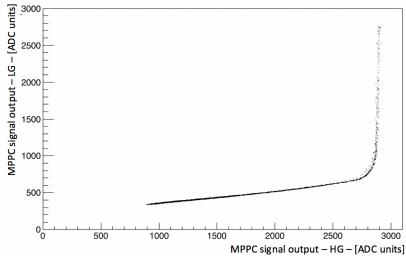
- FEB characterization online:
 - 4 FEBs.
 - 384 MPPCs.
 - Scintillator modules developed under AIDA project.
- Tests of FEB functionality:
 - Calibration.
 - Analogue readout.
 - Time-over-threshold.



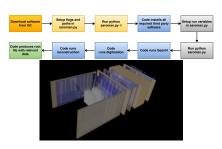



Magnet modules Scintillator modules Cable bundles Electronics Mechanics support frames

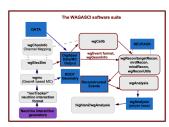
FEBv1 at T9 summer 2016: calibration

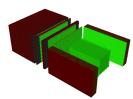

- MPPC signal calibration:
 - Pre-selection of MPPCs with Vop = nominal ± 100 mV.
 - ► Gain ~ 20 ADC/p.e.
 - FEBv1 dynamic range HG \sim 120 p.e.
- Zero suppression:
 - 3 ASICs on each FEB require different thresholds.
 - Localization of true baseline.

FEBv1 at T9 summer 2016: Low Gain calibration

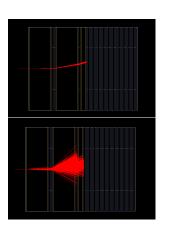

Magnet modules Scintillator modules Cable bundles Electronics Mechanics support frames

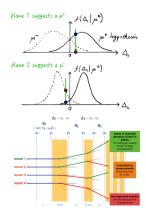
Block 1 (of 4) load tests: March 2017: 20 t

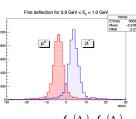



Two software environments

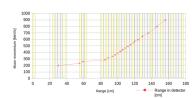
► The SaRoMan (Simulation And Reconstruction Of Muons And Neutrinos) package, derived from Neutrino Factory and nuSTORM studies



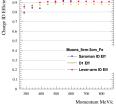

► The WAGASCI-Baby MIND package, derived from the T2K ND280 software suite.

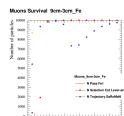


Low momenta: Lever Arm vs Multiple Scattering

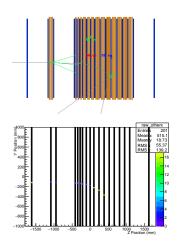


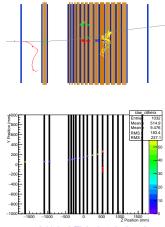
$$Rec \ as \ \mu^- \ if \ \frac{f_{\mu^-}(\Delta_1)}{f_{\mu^+}(\Delta_1)} > \frac{f_{\mu^+}(\Delta_2)}{f_{\mu^-}(\Delta_2)}$$


$$Rec \ as \ \mu^{\scriptscriptstyle +} \ if \ \frac{f_{\mu^{\scriptscriptstyle +}}(\Delta_1)}{f_{\mu^{\scriptscriptstyle -}}(\Delta_1)} {>} \frac{f_{\mu^{\scriptscriptstyle -}}(\Delta_2)}{f_{\mu^{\scriptscriptstyle -}}(\Delta_2)}$$


Lever Arm charge identification

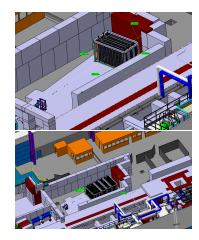
- 300 MeV/c to 450 MeV/c: use the deflection angle after the first magnet stack only.
- ▶ 450 MeV/c to 1 GeV/c: use the Lever-Arm algorithm.
- Above 1 GeV/c: use RecPack.


Compare Efficiencies 9cm-3cm Fe



SaRoMan event topologies: 1 GeV μ^+ & 1 GeV μ^-

Green: γ ; Red: e^- ; Yellow: neutron; Grey: Other (incl. muon)



Project milestones

- Electronics Front End Board beam test at T9 in June 2016.
- First complete Baby-MIND module in October 2016.
- Delivery of all scintillators by November 2016.
 - ▶ Was end Q1 2017 in October 2015 schedule
- Magnet modules ready end of February 2017.
- Detector modules ready end of April 2017.
- Beam tests characterization at T9 in May 2017 Block 1.
- Beam tests full detector at T9 in June 2017.
- Shipment to Japan in July 2017.
- Installation in Japan ND280 pit in September for operation in October 2017.

Beam tests at CERN

- Beam tests 2016: weeks in summer 2016 on T9 beamline at the PS in the East Area. Electronics, vertical sci. bars.
- ▶ Beam tests 2017: 1 week: 1st to 8th May. Block 1 (of 4 blocks), with 9 magnet modules, 7 scintillator modules. 3 weeks: 31st May to 21st June. Tests of full detector: 33 magnet modules, 18 scintillator modules
- ▶ Removal from T9: we plan to dismount the Baby MIND and pack it for transport to Japan over ~ 3 days around 21st June 2017.

Summary

- NP05 Baby MIND project status The Baby MIND collaboration aims to construct a magnetized iron neutrino detector for operation as a downstream muon spectrometer at the T59 WAGASCI experiment at J-PARC, with prior detailed characterization at the PS at CERN.
- Magnet modules: the novel design, with each having its own coil, enables far greater flexibility in detector layout compared with previous designs for this type of detector. 33/33 magnet modules constructed.
- Scintillator modules: Scintillator bars produced by INR have all been tested at INR and CERN before assembly. 9/18 modules assembled.
- ► Electronics: the re-design of the Front End Board is complete, integrating feedback from summer 2016 T9 beam tests, and new cabling scheme.
 Production of ~ 50 FEBs underway.
- ▶ Cable bundles: Photosensors connected to FEBs via 5 m, 32-ch extension cable bundles. Better accessibility and maintainability of FEBs. Production of \sim 150 bundles underway.
- Support mechanics and logistics: Support frames have been designed which will be used both for beam tests at T9, and for transport from CERN to J-PARC. These frames reduce significantly the installation and removal times at T9.
- Installation in Japan: Support mechanics concept takes into account access constraints due to the pit shaft. Discussion ongoing with Japanese colleagues.
- Physics simulations: Active updates of SaRoMan package, its track reconstruction module was tested partially with 2016 beam test data.