

HL-LHC buildings : acoustical modelling

Quentin Goestchel HSE-SEE-SV

HSE Occupational Health & Safety and Environmental Protection Unit

Table of contents

HSE Occupational Health & Safety and Environmental Protection Unit

Internship objectives

HSE Occupational Health & Safety and Environmental Protection Unit

Basic mapping

• Building shapes & background images:

Point 5 buildings

HSE Occupational Health & Safety and Environmental Protection Unit

17-Jul-17

Basic mapping

3D visualisation of SMB altitude points

HSE Occupational Health & Safety and Environmental Protection Unit

17-Jul-17

Sound sources

• Punctual & surface sound sources:

Spectral data provided by CERN or constructors

HSE Occupational Health & Safety and Environmental Protection Unit

Sound sources

• Noisy buildings:

HSE Occupational Health & Safety and Environmental Protection Unit

17-Jul-17

Transmission loss index

Models

Homogeneous-rigid material model :

Porous-elastic material model :

HSE Occupational Health & Safety and Environmental Protection Unit

Transmission loss index

Utilisation

HSE Occupational Health & Safety and Environmental Protection Unit

Hypothesis: Two cases of applicability

Homogeneous case: null vertical gradient of sound celerity from source to receiver

Favorable case: positive vertical gradient of sound celerity from source to receiver

HSE Occupational Health & Safety and Environmental Protection Unit

• Method:

Discretization of noise sources

Determination of sound power per frequency band

Calculation of probability of favourable conditions

Search for propagation paths between each source and receiver

On each propagation path

- Calculation of the attenuation
- Calculation of the long-term sound level

Local calculation of the long-term sound level

HSE Occupational Health & Safety and Environmental Protection Unit

Calculation & total long-term sound level:

Sound level at a receiver point, for a path S \rightarrow R: i indice is for both favorable and homogeneous conditions $\begin{cases} L_i = L_{w,0,dir} - A_i \\ A_i = A_{div} + A_{atm} + A_{dif,i} \end{cases}$

The total Long-term sound level, at point R: For one frequency band, summing all energies from the N paths

$$L_{tot,LT} = 10 \times \log\left(\sum_{n} 10^{\frac{1}{2}}\right)$$

HSE Occupational Health & Safety and Environmental Protection Unit

• Geometrical divergence: $A_{div} = 20 \times \log(d) + 11$

Atmospheric absorption: $A_{atm} = \alpha_{atm} \cdot d/1000$ Value and calculation of α_{atm} are detailed in ISO 9613-1

HSE Occupational Health & Safety and Environmental Protection Unit

• Diffraction:

 A_{dif} term is calculated for ground and obstacles

• **Reflection:** $L_W' = L_W + 10 \times \log(1 - \alpha_r)$

Issued S' point considered as a new source

HSE Occupational Health & Safety and Environmental Protection Unit

Results

Results

Point 5(France) « Arrêté du 23 janvier 1997 » **Residential area** L1: 28.36 dB(A) Day L2: 28.36 dB(A) Night ÷ 💡 Legal Levels at CERN limit: - Day : 70 dB(A) Night : 60 dB(A) -Residential area Emergence Day Niveau reglemented zone: dB(A) >..-35 >35-40 Day: 39 dB(A) ->40-45 >45-50 Night: 32,5 dB(A) >50-55 >55-60 >60-65 >65-70 >70-75 >75-80 >80-..

HSE Occupational Health & Safety and Environmental Protection Unit

Conclusion

HSE Occupational Health & Safety and Environmental Protection Unit

17-Jul-17

- Cnossos-EU
- ISO 9613-1
- IMMI help document Wölfel
- Le guide des systèmes thermiques et acoustiques Arval Arcelor Mittal
- Sujet et correction de l'agrégation de Génie Civil 2004
- Acoustique : conception et mise en œuvre Bruxelles Environnement

