Hexavalent Chromium & Nickel compounds **Biomonitoring** in **E**lectroplating workshop September 2017 **Diaine** Annabelle

1

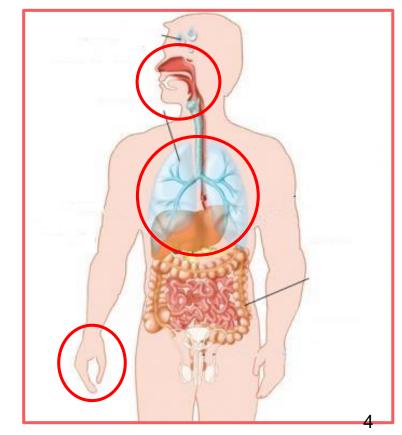
Objective: Risk assessment for nickel and chromium exposure in electroplating activity

Context of relocation of electroplating activity from B102 to B107

Chromium and Nickel exposure in B102:

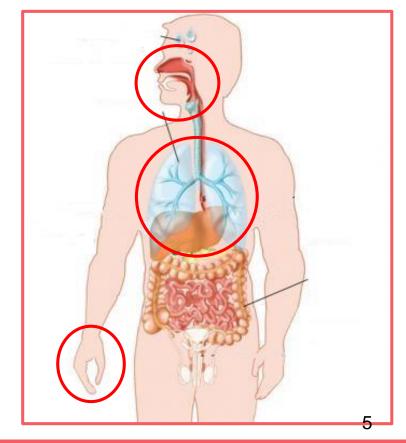
- Electroplating workshop
- Hexavalent chromium (Cr VI) in chromic acid plating baths
- Soluble nickel (Ni) compounds in nickel plating baths : sulphate, chloride, nickel sulfamate
- 6 Employees, no subcontractors

Absorption



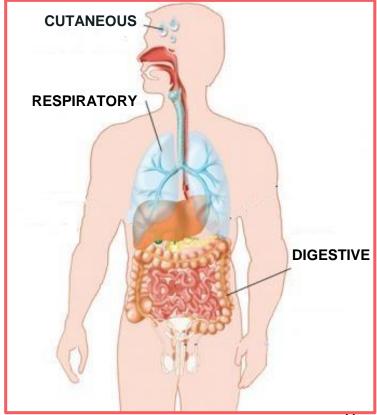
Toxicity

Cr VI


- Acute toxicity: digestive disorder, encephalopathy, death...
- <u>Chronic toxicity:</u>
 Pulmonary cancer
 ENT cancer
 Skin and respiratory sensitisation

Toxicity

Ni compounds ✤ <u>Acute toxicity:</u> none


 <u>Chronic toxicity:</u> Respiratory and skin sensitisation
 Pulmonary cancer (Oxide and sulphate nickel +++)
 Nasal cavity cancer

Absorption Chromium VI Respiratory: 50-85% Digestive: 10% Cutaneous: 4%

Nickel compounds

Respiratory: 25-60% Digestive <10% Cutaneous < 1%

Excretion

Metabolism of ➤ Chromium VI in Chromium III ➤ Nickel compounds in Nickel metal Urinary elimination for Nickel and

Urinary elimination for Nickel and Chromium III

Received dose

First assessment by metrology in ambiant air in 2015

Results << Interpretative Standards (AEV from SUVA 2015 ref 1903.f)

- Analysis of Chromium VI <1 μg.m-3 (AEV SUVA: 5 μg.m-3)
- Analysis of Nickel between < 1 and 2 μg.m-3 (AEV SUVA: 50 μg.m-3)

 \rightarrow No acute toxicity

 \rightarrow Chronic toxicity?

suva

Objective: Risk assessment for nickel substances and hexavalent chromium exposure in electroplating activity

Advantages of biomonitoring vs metrology:

- More precise results for low received doses
- Considering all routes of absorption, all sources of exposure and individual factors
- Point zero before relocation and impact of relocation on chemical exposure

Methods

Chromium	Nickel
2 Urinary tests T_0 and T_1	
Not specific to occupational exposure and not specific to Cr VI compound	Not specific to occupational exposure and sulfate nickel compound
Sample after break from work T_0	
Sample at the end of the week of work \mathbf{T}_1	
Dietary and lifestyle questionnaire	
Last month exposure to all Chromium forms (Cr 0, III, VI)	Recent exposure to all Nickel compounds

Versatile activity : traceability by tracking invoicing of 102 activities

Results compared to interpretative standards:

□ Results not complete

T₀ compared to RBV (limit in average population)
 Nickel : 1µg/L-0,7µg/L- 1,8µg/L < French RBV 3 µg/L
 Chromium : 0,2 µg/L - 0,3 µg/L - 0,2 µg/L - < French RBV 0,65 µg/L

 \Box T1 compared to LBV (limit in occupational exposure)Nickel: $0,4\mu g/L$ Swiss IBV: $40\mu g/L$ Chromium: $0,3\mu g/L$ French IBV: $2,5 \mu g/L$

Continuation:

Depends on the results

- Workstation visit if results over interpretative values
- \rightarrow Review of hygiene measures
- \rightarrow Review of particularly exposing tasks
 - Probable regular biomonitoring
 - In any cases: Maximum reduction in the risk exposure
- \rightarrow Maximum substitution of Chromium VI and Nickel
- \rightarrow Process automation testing

Thank you for your attention