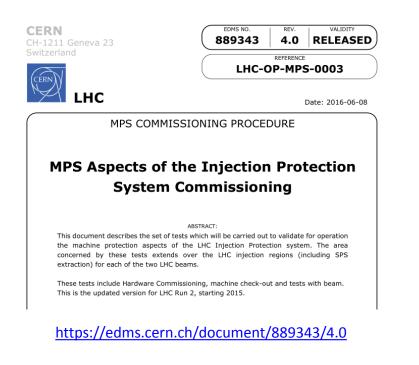
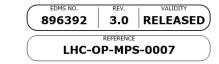
ABT MPS RECOMMISSIONING AFTER EYETS 16/17

W. Bartmann, C. Bracco, E. Carlier, L. Ducimetiere, C. Hessler, N. Magnin, V. Senaj, J. Wenninger, C. Wiesner


MPP, 31st March 2017

Outline


- SPS extraction, transfer, LHC injection
- LBDS
 - MKB coupling mitigation
 - Reliability run strategy
- Not covered here, but next week by Nicolas Magnin:
 - AGK modifications and validation
 - TSU firmware upgrade
 - Injection BIS input

MPS procedures

- Tests included there proved useful
- MPS procedure documents are up-to-date

CERN CH-1211 Geneva 23 Switzerland

Date: 2016-06-01

MPS COMMISSIONING PROCEDURE

The Commissioning of the LHC Machine Protection System

Beam Dump System Commissioning

ABSTRACT:

This document describes the set of tests which will be carried-out to validate for operation the LHC Beam Dump system LBDS. The systems concerned are mainly in point 6, but some measurements elsewhere in the LHC ring are required.

https://edms.cern.ch/document/896392/3.0

Step-by-step procedures

- On dfs: \Departments\TE\Groups\ABT\Sections\BTP\LHC-Restart-2017\Procedures
- Procedures for real test execution with details on mechanics, interlock masking, etc.
- Will move on EDMS after this startup

LHC Restart 2017

Activity Summary

Activity:	MKI waveform measurements
Activity leader:	Linda
Support	Mike Barnes, Etienne Carlier
needed from:	Enrico Bravin/Stephane Burger in case of BTV issues
Measurements	Step 1: Synchronization without beam. For each beam:
to perform	 Pulse the MKI in local mode
without beam	 Overlap the TMR signals from all 4 modules, adjusted for the time of
(detailed	flight
description):	 Overlap the CPU signals from all 4 modules, adjusted for the time of
	flight
Measurements	Step 2: Fine synchronization of the MKI modules (only necessary if TMR & CPU
to perform	signals are not in agreement). For each beam:
with beam	 Slightly offset timing so that the pulse is late
(detailed	 Adjust the timing for each module so that the start of the rising edge is
description):	seen as a kick to the circulating bunch, observed as oscillations on the
	damper pickup.
	 Configure each module with the timing found
	Step 3: Verification of the start of the flattop. If P8 synchronization did not
	change, only for beam 1, otherwise for each beam:
	 Close the TDI and put the BTVST screen in
	 Inject pilots with varying MKI delay, noting down their position on the
	screen, to check whether the waveform is as expected. (We need a few
	shots without kick and a few shots at flattop to calibrate, and then
	measure a few delays to verify the start of the flattop.)
	measure a few delays to verify the start of the nattop.)
Prerequisites	Step 1:
for performing	 Can be done during checkout
the	Step 2:
measurements	 Stable closed orbit
(e.g. other	- Damper pickups
systems which	Step 3:
need to work):	- TL steering done
	 Screens BTVST.A4L2.B1 and BTVST.A4R8.B2
Required	Step 2: Pilot, circulating (perhaps to dump and reinject sometimes)
beam	Step 3: Pilot, Inject and dump, intensity reasonably stable (shot-to-shot)
parameters:	
Time estimate:	Step 1: To be done during checkout
	Step 2: 1 hour per beam
	Step 3: 2 hours per beam
Any other	- Step 3 to be done after step 2. But if step 2 is not necessary, we could do step 3
comment:	without establishing the closed orbit if there is time in the schedule.
	- If step 2 is necessary we request machine setup (until MKI validation) to be
	done with a special delay (middle of the waveform instead of start).
	- Make sure the AGK changes are validated as well. (Failure cases tbd.)

- LHC_Restart_2017_Activity_Summary_asynch_dump_test.docx
- LHC_Restart_2017_Activity_Summary_Direct_BLM_test_procedure.docx
- LHC_Restart_2017_Activity_Summary_Inj_extr_protection_HW_and_interlock_checks.docx
- LHC_Restart_2017_Activity_Summary_Injection_Aperture_Measurements.docx
- LHC_Restart_2017_Activity_Summary_Interlock_BPM.docx
- LHC_Restart_2017_Activity_Summary_LBDS_aperture_measurements.docx
- LHC_Restart_2017_Activity_Summary_MKD_waveforms.docx
- LHC_Restart_2017_Activity_Summary_MKI_waveform.docx
- LHC_Restart_2017_Activity_Summary_SPS_extraction_setup.docx
- LHC_Restart_2017_Activity_Summary_TCDI_Alignment_And_Validation.docx
- LHC_Restart_2017_Activity_Summary_TCDQ_setup.docx
- LHC_Restart_2017_Activity_Summary_TDI_and_TCLI_setup.docx
- LHC_Restart_2017_Activity_Summary_TL_aperture_and_optics_measurements.docx
- LHC_Restart_2017_Activity_Summary_Transfer_Line_Steering_and_Injection_setup.docx

SPS extraction and transfer

- SPS extraction
 - Usual steps: <u>https://edms.cern.ch/document/1750252/1</u>
 - Flatten orbit in LSS4/6
 - Setup nominal bump
 - Aperture measurement at extraction was performed last run after each TS with Coldex modifications
 - Can be done with upstream TED in ahead of LHC beam commissioning
- Transfer line
 - Notes from IEFC 03/03/17:
 - TI 2 : Performed vertical smoothing of quads 46% roll adjustment and 23% vertical adjustment. To note: the TI 2 vertical dipoles were also corrected at the top of the line (where the larger vertical excursions where measured)
 - Aperture measurement with dipole kicks of 30 deg phase shift along the lines
 - Consider also checking the optics with kick response

LHC injection

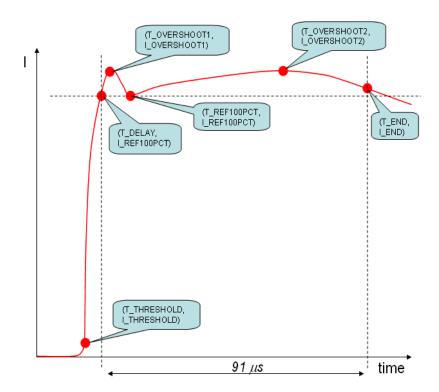
- Keep changes from 2015 on injection protection setup and validation
 - Automatic alignment application
 - Validation with *pycollimate*
 - X-measurement
- Additional tests
 - Kick response from line into ring to verify BPM capture is working
 - MKI module synchronisation and verification of flattop start for B1 after TS exchange
 - To be verified if injection protection needs to separately setup and validated for VdM scan optics
- No changes to interlocking strategy
 - All BETS modifications as introduced after LS1 kept (MSI, TDI, TCDQ)
 - Modifications related to variable AGK by Nicolas next week
- Test BLM inhibit with 288 b trains

LHC injection

- Standard optics for VdM scans
 - Setup for ATS but roll back to standard for VdM scans
 - Optics in injection region changes only at TCLIB
 - Keeping TCLIB settings in mm results in 7.2 sig (P2) and 8.3 sig (P8)
 - Until 2015 we had TCLIB at 8.3 sig during high intensity operation to minimize number of intercepted primary protons
 - For VdM scans will inject 4 nominal bunches at a time
 - Keeping these settings we consider safe
- Checks to be done for VdM scans
 - Check the orbit difference with nominal bunches
 - Perform alignment check with parallel jaws
 - Perform injection loss maps with/without injection protection

LHC extraction modifications (more from Nicolas)

- Modifications during EYETS on dilution kickers to avoid MKB coupling
 - Retrigger box insulated from generator
 - Nano crystalline tores added on retrigger line to suppress common mode
 - After this modifications no coupling up to 7.1 TeV observed
 - Confidence for 6.5 TeV operation
 - Margin for 7 TeV operation not known, system will be different after LS2
 - Retriggering of MKBs seriously considered and studied for possible implementation in LS2


Reliability run strategy

- 2 weeks at 7 TeV ongoing
- 1 week at 6.5 TeV
- Monitor rate of erratics and coupling
- Keep MKBH voltage reduction as fall back option
- LIBD with EN/STI input of 80% pattern being prepared will report to MPP in due time

LHC extraction tests

In addition to standard procedure:

- MKD waveform check
 - Verify rising edge and rise time
 - Relevant for variable AGK
- MKB waveform check
 - Dump ~5 pilots distributed over the machine
- AG cleaning
 - Check if SIS triggered cleaning works

Summary

- Standard MPS revalidation procedure as in updated documents
 - Cannot rely on following all changes and their impact
- Certain interventions during EYETS require additional tests
 - TI 2 aperture/optics due to smoothing
 - MKIP2 rising edge to exchange in TS prior ion run synchronisation for performance improvement
 - VdM standard optics requires alignment check and loss maps
 - BLM inhibit since 288 b trains couldn't be injected last year
 - MKD rise time as input for AGK modifications and check if component ageing
- MKB coupling issue solved for 6.5 TeV operation
 - Synchronous retriggering considered for post LS2
- Reliability run ongoing
 - Baseline to keep MKB at 100% voltage for 6.5 TeV
 - Depending on erratic rate have fall back possibility
 - Approval of reduced MKB voltage being prepared in parallel