The Physics of Gravitational Waves

Neil J. Cornish

Outline

- Nearly Minkowski spacetimes
- Coordinate (gauge) freedom
- Linearized Field Equations
- Revisiting the Newtonian Limit
- Wave equation and solution
- Transverse-Traceless and Fermi normal coordinates
- Generating gravitational waves - the multipole expansion
- Energy carried by gravitational waves

Nearly Minkowski Spacetimes

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \quad\left|h_{\mu \nu}\right| \ll 1
$$

This description is valid for our solar system, galaxy and even out to a few Gpc's. Really good for gravitational waves.

Solar system, galaxy $\left|h_{\mu \nu}\right|<10^{-6} \quad$ Universe out to $1 \mathrm{Gpc} \quad\left|h_{\mu \nu}\right|<10^{-2} \quad$ Gravitational Waves $\left|h_{\mu \nu}\right|<10^{-20}$

Recall Riemann normal coordinates and their extension, Fermi Normal coordinates

$$
g_{\mu \nu}=\eta_{\mu \nu}-\frac{1}{3} R_{\mu \alpha \nu \beta} x^{\alpha} x^{\beta}+\mathcal{O}\left(x^{3}\right)
$$

Coordinate Transformations

There are two kinds of coordinate transformations that preserve the nearly Minkowski form: Lorentz transformations and infinitesimal coordinate (gauge) transformations

Lorentz transformations:

$$
x^{\bar{\mu}}=L^{\bar{\mu}}{ }_{\mu} x^{\mu}
$$

$$
\Rightarrow \quad h_{\bar{\mu} \bar{\nu}}=L_{\bar{\mu}}^{\mu} L_{\bar{\nu}}^{\nu} h_{\mu \nu}
$$

Gauge transformations:

$$
x^{\bar{\mu}}=x^{\nu}+\zeta^{\nu}, \quad\left|\zeta^{\nu}\right| \ll 1
$$

$$
\Rightarrow \quad h_{\bar{\mu} \bar{\nu}}=h_{\mu \nu}-\partial_{\mu} \zeta_{\nu}-\partial_{\nu} \zeta_{\mu}
$$

Riemann tensor components invariant under gauge transformation:

$$
R_{\alpha \beta \mu \nu}=\frac{1}{2}\left(\partial_{\beta} \partial_{\mu} h_{\alpha \nu}+\partial_{\alpha} \partial_{\nu} h_{\beta \mu}-\partial_{\beta} \partial_{\nu} h_{\alpha \mu}-\partial_{\alpha} \partial_{\mu} h_{\beta \nu}\right)
$$

Linearized Field Equations

$$
\begin{gathered}
R_{\mu \nu}=\frac{1}{2}\left(-\partial^{\alpha} \partial_{\alpha} h_{\mu \nu}+\partial^{\alpha} \partial_{\mu} h_{\nu \alpha}+\partial^{\alpha} \partial_{\nu} h_{\mu \alpha}-\partial_{\mu} \partial_{\nu} h\right) \quad R=\partial^{\mu} \partial^{\nu} h_{\mu \nu}-\partial^{\mu} \partial_{\mu} h \\
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} R \eta_{\mu \nu}=8 \pi T_{\mu \nu} \\
\text { Define } \quad \square=\partial^{\alpha} \partial_{\alpha}=-\partial_{t}^{2}+\nabla^{2} \quad \text { and } \quad \bar{h}_{\mu \nu}=h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu} \\
\Rightarrow \quad-\square \bar{h}_{\mu \nu}+\partial_{\nu} \partial^{\alpha} \bar{h}_{\mu \alpha}+\partial_{\mu} \partial^{\alpha} \bar{h}_{\nu \alpha}-\eta_{\mu \nu} \partial^{\alpha} \partial^{\beta} \bar{h}_{\alpha \beta}=16 \pi T_{\mu \nu}
\end{gathered}
$$

Now, under the Gauge transform $\quad x^{\bar{\nu}}=x^{\nu}+\zeta^{\nu} \quad$ we have $\quad \partial^{\bar{\alpha}} \bar{h}_{\bar{\mu} \bar{\alpha}}=\partial^{\alpha} \bar{h}_{\mu \alpha}-\square \zeta_{\mu}$
Setting $\quad \square \zeta_{\mu}=\partial^{\alpha} \bar{h}_{\mu \alpha}$ selects the Lorentz gauge family $\partial^{\bar{\alpha}} \bar{h}_{\bar{\mu} \bar{\alpha}}=0$

Note that the Lorentz gauge is not fully gauge fixed. Free to shift by a homogeneous term: $\quad \zeta^{\nu} \rightarrow \zeta^{\nu}+\lambda^{\nu}, \quad \square \lambda^{\nu}=0$

Linearized Field Equations: Lorentz Gauge

$$
\square \bar{h}_{\mu \nu}=-16 \pi T_{\mu \nu} \quad \partial^{\nu} \bar{h}_{\mu \nu}=0
$$

c.f. Maxwell's equations $\square A^{\mu}=J^{\mu}, \quad \partial_{\mu} A^{\mu}=0$

The methods for solving the linearized Einstein equations are almost identical to E\&M, retarded Green's functions etc

Newtonian Limit Revisited

$$
\begin{gathered}
\qquad \begin{array}{l}
|v| \ll 1 \\
\mu \nu
\end{array}\left|\ll 1 \partial_{t}^{2}\right| \ll\left|\nabla^{2}\right| \\
\square \bar{h}_{\mu \nu}=-16 \pi T_{\mu \nu} \quad\left|T_{t t}\right| \gg\left|T_{t i}\right| \gg\left|T_{i j}\right| \\
\text { Recover Newtonian Gravity by setting } \quad \bar{h}_{t t}=-4 \Phi \\
\Rightarrow \quad d s_{t t}^{2}=-(1+2 \Phi) d t^{2}+(1-2 \Phi)\left(d x^{2}+d y^{2}+d z^{2}\right) \\
u^{t}=\frac{d t}{d \tau}=1+\frac{1}{2} v^{2}-\Phi \approx 1
\end{gathered}
$$

This is the leading order in the post-Newtonian expansion of Einstein's equations

Solving the wave equation

$$
\square \bar{h}_{\mu \nu}=-16 \pi T_{\mu \nu} \quad \partial^{\nu} \bar{h}_{\mu \nu}=0
$$

We can use all the familiar tools: Green's functions, expansion in special functions etc

Start with a plane-wave expansion of the vacuum equations: $\quad \bar{h}_{\mu \nu}=\Re\left\{A_{\mu \nu} e^{i \vec{k} \cdot \vec{x}}\right\} \quad \square \bar{h}_{\mu \nu}=0 \quad \vec{k} \rightarrow(\omega, \mathbf{k})$

$$
\Rightarrow \quad \vec{k} \cdot \vec{k}=0, \quad A_{\mu \nu} k^{\nu}=0
$$

Tells us that gravitational waves travel at the speed of light and are transverse.
The polarization tensor $A_{\mu \nu}$ is symmetric, so has 10 independent components. The transverse condition provides 4 constraints, so 6 dof remain But, we have the remaining gauge freedom $\quad \zeta^{\nu} \rightarrow \zeta^{\nu}+\lambda^{\nu}, \quad \square \lambda^{\nu}=0 \quad \Rightarrow \quad \lambda^{\nu}=i C^{\nu} e^{i \vec{k} \cdot \vec{x}}$

Applying this freedom we have

$$
{ }^{(\text {new })} A_{\mu \nu}={ }^{(\text {old })} A_{\mu \nu}+C_{\mu} k_{\nu}+C_{\nu} k_{\mu}-\eta_{\mu \nu} k^{\alpha} C_{\alpha}
$$

Can fully gauge fix by choosing the $4 C_{\mu}$ to be anything we want. Two degrees of freedom remain.

Finalizing the gauge choice

The residual gauge freedom can be used to finalize our coordinate choice. In the early bar-detector era, Fermi Normal coordinates were a popular choice. Today the transverse-traceless (TT) gauge has risen to prominence. Both have their uses.

TT Gauge:

Use gauge freedom to make traceless:

$$
{ }^{\text {(new) }} A_{\mu}^{\mu}={ }^{(\text {old })} A_{\mu}^{\mu}-4 C_{\mu} k^{\mu}=0
$$

And make orthogonal to observers worldline:

$$
{ }^{(\text {new })} A_{\mu \nu} u^{\nu}=0
$$

$$
\text { (3 constraints since }{ }^{(\text {old })} A_{\mu \nu} u^{\nu} k^{\mu}=0 \text {) }
$$

TT metric for a plane wave propagating in the z direction as seen by inertial observer:

$$
\begin{aligned}
& \vec{u} \rightarrow(1,0,0,0) \\
\Rightarrow & \vec{k} \rightarrow(\omega, 0,0, \omega) \\
\Rightarrow & A_{\mu t}=0, \quad A_{\mu z}=0, \quad A_{y y}=-A_{x x}
\end{aligned}
$$

TT gauge

$$
\begin{aligned}
d s^{2} & =-d t^{2}+\left(1+h_{x x}\right) d x^{2}+\left(1-h_{x x}\right) d y^{2}+2 h_{x y} d x d y+d z^{2} \\
& =-d t^{2}+\left(1+h_{+}\right) d x^{2}+\left(1-h_{+}\right) d y^{2}+2 h_{\times} d x d y+d z^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { With } \\
& \begin{array}{l}
h_{+}=A_{+} \cos \left(\omega(t-z)+\phi_{+}\right) \\
h_{\times}=A_{\times} \cos \left(\omega(t-z)+\phi_{\times}\right)
\end{array}
\end{aligned}
$$

Motion of a test mass? $\quad \frac{d u^{\alpha}}{d \tau}=-\Gamma_{\mu \nu}^{\alpha} u^{\mu} u^{\nu}=\frac{1}{2} \partial^{\alpha} h_{\mu \nu} u^{\mu} u^{\nu}$

If initially stationary $\quad u^{\alpha}=\left.\delta_{t}^{\alpha} \quad \Rightarrow \quad \frac{d u^{\alpha}}{d \tau}\right|_{0}=\frac{1}{2} \partial^{\alpha} h_{t t}=0 \quad$ Stays fixed at the same coordinate location!

We have used the original gauge freedom \square $\partial \lambda^{\mu}=0$ to absorb the GW into the coordinate system.

The Π gauge is great for doing calculations (globally defined, test particles stay fixed), but hides the physical nature of the wave

"Ripples of Curvature"

$$
\begin{aligned}
& R_{\alpha \beta \mu \nu}=\frac{1}{2}\left(\partial_{\beta} \partial_{\mu} h_{\alpha \nu}+\partial_{\alpha} \partial_{\nu} h_{\beta \mu}-\partial_{\beta} \partial_{\nu} h_{\alpha \mu}-\partial_{\alpha} \partial_{\mu} h_{\beta \nu}\right) \\
& R_{y t y t}=R_{y z y z}=R_{x t x z}=-R_{x t x t}=-R_{x z x z}=-R_{y t y z}=\frac{1}{2} \ddot{h}_{+} \\
& R_{x t y z}=R_{y t x z}=-R_{x z y z}=-R_{x t y t}=-R_{y t x t}=-R_{y z x z}=\frac{1}{2} \ddot{h}_{\times}
\end{aligned}
$$

Geodesic deviation equation tells us that GWs generate a time varying tidal field
Can be seen more directly in locally inertial Fermi Normal coordinates. Recall that $g_{\mu \nu}=\eta_{\mu \nu}-\frac{1}{3} R_{\mu \alpha \nu \beta} x^{\alpha} x^{\beta}+\mathcal{O}\left(x^{3}\right)$

$$
\begin{aligned}
\Rightarrow d s^{2} & \approx-d \bar{t}^{2}\left(1+R_{t i t j} \bar{x}^{i} \bar{x}^{j}\right)-\frac{4}{3} d \bar{t} d \bar{x}^{i}\left(R_{t j i k} \bar{x}^{j} \bar{x}^{k}\right)+d \bar{x}^{i} d \bar{x}^{j}\left(\delta_{i j}-\frac{1}{3} R_{i k j l} \bar{x}^{k} \bar{x}^{l}\right) \\
& =-d \bar{t}^{2}+d \bar{x}^{2}+d \bar{y}^{2}+d \bar{z}^{2}+\left(\ddot{h}_{\times}(t-z) \bar{x} \bar{y}+\frac{1}{2} \ddot{h}_{+}(t-z)\left(\bar{x}^{2}-\bar{y}^{2}\right)\right)(d \bar{t}-d \bar{z})^{2}
\end{aligned}
$$

Fermi Normal Coordinates

$$
d s^{2}=-d \bar{t}^{2}+d \bar{x}^{2}+d \bar{y}^{2}+d \bar{z}^{2}+\left(\ddot{h}_{\times}(t-z) \bar{x} \bar{y}+\frac{1}{2} \ddot{h}_{+}(t-z)\left(\bar{x}^{2}-\bar{y}^{2}\right)\right)(d \bar{t}-d \bar{z})^{2}
$$

Remarkably, while FNC are only valid locally, this particular form for the metric is valid globally. See [M. Rakhmanov, Class. Quantum Grav. 31 (2014) 085006]

To leading order, the FNC and $T T$ coordinates are related via

$$
\begin{aligned}
& x=\bar{x}-\frac{1}{2} h_{+} \bar{x}-\frac{1}{2} h_{\times} \bar{y}-\frac{1}{2} \bar{z}\left(\bar{x} \dot{h}_{+}+\bar{y} \dot{h}_{\times}\right) \\
& y=\bar{y}+\frac{1}{2} h_{+} \bar{y}-\frac{1}{2} h_{\times} \bar{x}+\frac{1}{2} \bar{z}\left(\bar{y} \dot{h}_{+}-\bar{x} \dot{h}_{\times}\right) \\
& z=\bar{z}+\frac{1}{4}\left(\bar{x}^{2}-\bar{y}^{2}\right) \dot{h}_{+}+\frac{1}{2} \bar{x} \bar{y} \dot{h}_{\times} \\
& t=\bar{t}-\frac{1}{4}\left(\bar{x}^{2}-\bar{y}^{2}\right) \dot{h}_{+}-\frac{1}{2} \bar{x} \bar{y} \dot{h}_{\times}
\end{aligned}
$$

We see that the wave gets put into the TT coordinates

Fermi Normal Coordinates

$$
d s^{2}=-d \bar{t}^{2}+d \bar{x}^{2}+d \bar{y}^{2}+d \bar{z}^{2}+\left(\ddot{h}_{\times}(t-z) \bar{x} \bar{y}+\frac{1}{2} \ddot{h}_{+}(t-z)\left(\bar{x}^{2}-\bar{y}^{2}\right)\right)(d \bar{t}-d \bar{z})^{2}
$$

Geodesic equation for a test mass in FNC:

$$
\begin{aligned}
& \frac{d^{2} \bar{x}}{d \bar{t}^{2}} \approx \frac{1}{2} \bar{x} \ddot{h}_{+}+\frac{1}{2} \bar{y} \ddot{h}_{\times} \\
& \frac{d^{2} \bar{y}}{d \bar{t}^{2}} \approx \frac{1}{2} \bar{x} \ddot{h}_{\times}-\frac{1}{2} \bar{y} \ddot{h}_{+} \\
& \frac{d^{2} \bar{z}}{d \bar{t}^{2}} \approx 0
\end{aligned}
$$

Using the long wavelength limit:

$$
|\bar{x}|,|\bar{y}| \ll \lambda=\frac{2 \pi}{\omega}
$$

Fermi Normal Coordinates

$$
\frac{d^{2} \bar{x}}{d \bar{t}^{2}} \approx \frac{1}{2} \bar{x} \ddot{h}_{+}+\frac{1}{2} \bar{y} \ddot{h}_{\times} \quad \frac{d^{2} \bar{y}}{d \bar{t}^{2}} \approx \frac{1}{2} \bar{x} \ddot{h}_{\times}-\frac{1}{2} \bar{y} \ddot{h}_{+}
$$

Ring of test particles, initially with $\quad \bar{x}=L \cos \phi, \quad \bar{y}=L \sin \phi, \quad \bar{z}=0$
$\Rightarrow \quad \bar{x}=L\left(\cos \phi+\frac{1}{2}\left(\cos \phi h_{+}+\sin \phi h_{\times}\right)\right) \quad \bar{y}=L\left(\sin \phi+\frac{1}{2}\left(\cos \phi h_{\times}-\sin \phi h_{\times}\right)\right)$

Generating Gravitational Waves

$$
\square \bar{h}_{\mu \nu}=-16 \pi T_{\mu \nu}
$$

Solution via Green's function:

$$
\bar{h}_{\mu \nu}(\vec{x})=-16 \pi \int d^{4} x^{\prime} G\left(\vec{x}-\vec{x}^{\prime}\right) T_{\mu \nu}\left(\vec{x}^{\prime}\right)
$$

Where $\quad G\left(\vec{x}-\vec{x}^{\prime}\right)=-\frac{1}{4 \pi\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \delta\left(t_{\mathrm{ret}}-t_{\mathrm{ret}}^{\prime}\right) \quad$ satisfies $\quad \square G\left(\vec{x}-\vec{x}^{\prime}\right)=\delta^{4}\left(\vec{x}-\vec{x}^{\prime}\right)$

The retarded time is defined as usual: $\quad t_{\text {ret }}=t-\left|\mathbf{x}-\mathbf{x}^{\prime}\right|$

$$
\Rightarrow \quad \bar{h}_{\mu \nu}(t, \mathbf{x})=4 \int d^{3} x^{\prime} \frac{T_{\mu \nu}\left(t_{\mathrm{ret}}, \mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}
$$

Generating waves in the TT gauge

The general solution can be expressed in the Π gauge by using the 4-index projection tensor $\quad \Lambda_{i j k l}=P_{i k} P_{j l}-\frac{1}{2} P_{i j} P_{k l}$
Which is defined in terms of the 2-index projection tensor $\quad P_{i j}=\delta_{i j}-n_{i} n_{j}$
The P projection removes and components along the propagation direction, and the Lambda projection additionally removes the trace

$$
h_{i j}^{T T}=\Lambda_{i j k l} \bar{h}^{k l}
$$

Denoting the extent of the source by d, and the distance to a distance observer by r, we can approximate:

$$
\begin{gathered}
\left|\mathbf{x}-\mathbf{x}^{\prime}\right|=r-\mathbf{x}^{\prime} \cdot \hat{\mathbf{n}}+\mathcal{O}\left(\frac{d^{2}}{r}\right) \\
\Rightarrow \quad h_{i j}^{T T}=\frac{4}{r} \Lambda_{i j}^{k l} \int d^{3} x^{\prime} T_{k l}\left(t-r+\mathbf{x}^{\prime} \cdot \hat{\mathbf{n}}, \mathbf{x}^{\prime}\right)
\end{gathered}
$$

Post-Newtonian Expansion

$$
h_{i j}^{T T}=\frac{4}{r} \Lambda_{i j}^{k l} \int d^{3} x^{\prime} T_{k l}\left(t-r+\mathbf{x}^{\prime} \cdot \hat{\mathbf{n}}, \mathbf{x}^{\prime}\right)
$$

In the limit that the material is moving at low velocities we can expand:

$$
\begin{gathered}
T_{k l}\left(t-r+\mathbf{x}^{\prime} \cdot \hat{\mathbf{n}}, \mathbf{x}^{\prime}\right) \approx T_{k l}(t-r)+x_{i}^{\prime} n^{i} \partial_{t} T_{k l}+\frac{1}{2} x_{i}^{\prime} x_{j}^{\prime} n^{i} n^{j} \partial_{t}^{2} T_{k l}+\ldots \\
\Rightarrow \quad h_{i j}^{T T}(t, \mathbf{x})=\frac{4}{r} \Lambda_{i j k l}\left[S^{k l}(t-r)+n_{m} \dot{S}^{k l m}(t-r)+\frac{1}{2} n_{m} n_{p} \ddot{S}^{k l m p}(t-r)+\ldots\right]
\end{gathered}
$$

Here we have introduced the multipole moments

$$
S^{i j}(t)=\int d^{3} x^{\prime} T^{i j}\left(t, \mathbf{x}^{\prime}\right) \quad S^{i j k}(t)=\int d^{3} x^{\prime} T^{i j}\left(t, \mathbf{x}^{\prime}\right) x^{\prime k} \quad S^{i j k p}(t)=\int d^{3} x^{\prime} T^{i j}\left(t, \mathbf{x}^{\prime}\right) x^{\prime k} x^{\prime p}
$$

Post-Newtonian Expansion

The lowest order multipole moment dominates for slow moving sources. It is related to mass quadrupole moment

$$
\begin{gathered}
Q^{i j}(t)=\int d^{3} x T_{t t}(t, \mathbf{x}) x^{i} x^{j} \approx \int d^{3} x \rho(t, \mathbf{x}) x^{i} x^{j} \\
\dot{Q}^{i j}(t)=\int d^{3} x \partial^{t} T_{t t}(t, \mathbf{x}) x^{i} x^{j}=-\int d^{3} x \partial^{k} T_{t k}(t, \mathbf{x}) x^{i} x^{j}=\int d^{3} x\left(T_{t}^{i} x^{j}+T_{t}^{j} x^{i}\right)-\oint T^{t k} x x^{j} n_{k} d^{2} S \\
\ddot{Q}^{i j}(t)=-\int d^{3} x\left(\partial_{k} T^{k i}(t, \mathbf{x}) x^{j}+\partial_{k} T^{k j}(t, \mathbf{x}) x^{i}\right)=2 \int d^{3} x T^{i j}(t, \mathbf{x})-\oint\left(T^{k i} x^{j}+T^{k j} x^{i}\right) n_{k} d^{2} S \\
\Rightarrow \quad S^{i j}(t)=\frac{1}{2} \ddot{Q}^{i j}(t)
\end{gathered}
$$

Post-Newtonian Expansion

Lowest order, Quadrupole approximation:

$$
h_{i j}^{T T}(t, \mathbf{x})=\frac{2}{r} \Lambda_{i j k l} \ddot{Q}^{k l}(t-r)=\frac{2}{r} \ddot{Q}_{i j}^{T T}(t-r)
$$

Applying the projections for a wave traveling in the z direction

$$
\begin{aligned}
& h_{+}(t)=\frac{1}{r}\left(\ddot{Q}_{x x}(t-r)-\ddot{Q}_{y y}(t-r)\right) \\
& h_{\times}(t)=\frac{2}{r} \ddot{Q}_{x y}(t-r)
\end{aligned}
$$

In Lecture 5 we will apply this formalism to binary systems.

Energy carried by gravitational waves

Expand Einstein equations to next order

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}+f_{\mu \nu}
$$

$$
\left|f_{\mu \nu}\right| \sim\left|h_{\mu \nu}\right|^{2}
$$

$$
G_{\mu \nu}^{(1)}(h)=8 \pi T_{\mu \nu} \quad G_{\mu \nu}^{(2)}(f)=8 \pi \tau_{\mu \nu}\left(h^{2}\right)
$$

Energy Momentum Tensor for GWs

$$
\tau_{\mu \nu}^{T T}=\frac{1}{32 \pi}\left\langle\partial_{\mu} h_{j k}^{T T} \partial_{\nu} h^{T T^{j k}}\right\rangle
$$

(GW energy can't be localized)

Traceless

$$
\tau_{\mu}^{\mu}=0
$$

Conserved

$$
\partial^{\nu} \tau_{\mu \nu}=0
$$

In spherical coordinates

$$
\left.\left.\tau_{t t}=\tau_{r r}=-\tau_{t r}=\left.\frac{1}{32 \pi}\langle | \dot{h}_{i j}^{T T}\right|^{2}\right\rangle=\left.\frac{1}{8 \pi r^{2}}\langle | \dddot{Q}_{i j}^{T T}\right|^{2}\right\rangle
$$

Energy radiated

$$
\left.\frac{d E}{d t}=\oint \tau_{t r} r^{2} \sin ^{2} \theta d \phi \quad \Rightarrow \quad \frac{d E}{d t}=\left.\frac{1}{5}\langle | \dddot{Q}_{i j}(t-r)\right|^{2}\right\rangle
$$

Energy, Momentum and Angular Momentum carried by gravitational waves

Energy radiated

$$
\frac{d E}{d t}=\frac{r^{2}}{32 \pi} \int d \Omega\left\langle\dot{h}_{i j}^{T T} \dot{h}_{T T}^{i j}\right\rangle
$$

Linear momentum radiated

$$
\frac{d P^{k}}{d t}=-\frac{r^{2}}{32 \pi} \int d \Omega\left\langle\dot{h}_{i j}^{T T} \partial^{k} h_{T T}^{i j}\right\rangle
$$

Angular momentum radiated

$$
\frac{d J^{i}}{d t}=\frac{r^{2}}{32 \pi} \int d \Omega\left\langle 2 \epsilon^{i k l} \dot{h}_{a l}^{T T} \dot{h}_{a k}^{T T}-\epsilon^{i k l} \dot{h}_{a b}^{T T} x_{k} \partial_{l} h_{T T}^{a b}\right\rangle
$$

