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Nearly Minkowski Spacetimes

Juv = NMuv + Ny hyw| <1

This description is valid for our solar system, galaxy and even out to a few Gpc’s. Really good for gravitational waves.

Solar system, galaxy |l | < 107° Universe outto 1 Gpc  |h| < 102 Gravitational Waves  |h,,,| < 102V
Recall Riemann normal coordinates and their extension, L 1 a 3 3
Fermi Normal coordinates Jpv = Nuv — §RMOW5 rT” A+ (9(3j )



Coordinate Transformations

There are two kinds of coordinate transformations that preserve the nearly Minkowski form: H oxt
Lorentz transformations and infinitesimal coordinate (gauge) transformations

ONs: b TH M Ip— 2
| orentz transformations: ot = L 0T =  hpp =L L A
Gauge transformations: ot = ¥ + C”, " <1 = h[u? — h,ul/ — ,uCI/ — &/Cu

Riemann tensor components invariant
under gauge transformation:

1
Ra[gw/ — 5(85@%” -+ (9@8,/}%“ — (958,/1@“ — ({%éauhg,/)



Linearized Field Equations

1 ”
Ry = 5(=0"0ahy + 0% Ouhue + 00y — 0,0, h) R = 9"0" hy,, — 0", h
1
G'LLV — Rluy — §R77,uy — 87TTMV
: s’ 2 2 1 1
Define =00, = -0, +V and  hy, =hy,, — §h umn
=  —[Ohy,, + 0,0 + 0,06 — 17, 0%0 hag = 167 T,

Now, under the Gauge transform ¥ = x¥ 4+ (¥  we have 85‘i_zﬂ@ = 8O‘i_zua —

Setting (,, = 0%hyua  selects the Lorentz gauge family  0%hzq = 0

Note that the Lorentz gauge is not fully gauge fixed. Free to shift by a homogeneous term:

G

(" = T+ AY

AN =0



Linearized Field Equations: Lorentz Gauge

hyw = —1671T), 0"h,, =0

c.f. Maxwell’s equations 0OA* = J#, 9,A* =0

The methods for solving the linearized Einstein equations are almost identical to E&M, retarded Green'’s functions etc



Newtonian Limit Revisited

hu| < 1 v] < 1 07| < |V?] Tye| > |Ty| > Ty,
B,uu — — 1067 Tlﬂ/ —> }_Ltt — —167TTtt — VQBtt — —167Tp
Recover Newtonian Gravity by setting Btt = —4d

=  ds® = —(1+2®)dt* + (1 — 2®)(dz* + dy* + dz°)

dt 1
t 9
= — =14+ v —P =~ 1
U +2v

This is the leading order in the post-Newtonian expansion of Einstein’s equations



Solving the wave equation

h,, =—-1671T,, 0"hy, =0

We can use all the familiar tools: Green’s functions, expansion in special functions etc

Start with a plane-wave expansion of the vacuum equations: huw =R {AW eik'f} h w = 0 k — (w,k)

—

= k-k=0, A, k=0

Tells us that gravitational waves travel at the speed of light and are transverse.

The polarization tensor AW IS symmetric, so has 10 independent components. The transverse condition provides 4 constraints, so 6 dof remain

But, we have the remaining gauge freedom ~ ¢” — ¢7 + A", A\ =0 — A\ =iC" T

Applying this freedom we have (neW)AW — (Old)AW + Cuky +Cuky, —n k%Cy

Can fully gauge fix by choosing the 4 €', to be anything we want. Two degrees of freedom remain.



rinalizing the gauge choice

The residual gauge freedom can be used to finalize our coordinate choice. In the early bar-detector era, Fermi Normal
coordinates were a popular choice. Today the transverse-traceless (1T) gauge has risen to prominence. Both have their uses.

TT Gauge:
Use gauge freedom to make traceless: (neW)A‘/j — (Old)A‘/j —4C,k* =0 (1 constraint)
And make orthogonal to observers worldline: (neW)AW u’ =0 (3 constraints since YA, v’ k* =0 )

TT metric for a plane wave propagating in the z direction as seen by inertial observer:

—

ﬁ%(l,0,0,0) k—)(w,Ojo,w)

= A4=0, A,,=0, A, =-—-A4,,



1| gauge

ds® = —dt* + (1 + hyy)dz? + (1 — hyy)dy? + 2hy, dedy + dz° With
hy = Ay cos(w(t — 2) + o)
= —dt* + (1 + hy)dz? + (1 — hy)dy? + 2hy dxdy + dz° hyx = Ax cos(w(t — 2) + dx)
- dua 84 |74 1 84 1%
Motion of a test mass? — = I, ut'u” = 58 hpw utu
i initially stationary & — 5? — d;_a — %@Oﬁ hy =0 Stays fixed at the same coordinate location!
T 1o

We have used the original gauge freedom A = (0 to absorb the GW into the coordinate system.

The TT gauge is great for doing calculations (globally defined, test particles stay fixed), but hides the physical nature of the wave



"Ripples of Curvature”
Raguy = %((’%cmhw + 8ac9,,hgﬂ — (95(9yhow — 5’aaluhgy)

Rytyt — Ryzyz = Rater = —Rgtot = —Rapzpr = _Rytyz — 5 h—l—
Non-vanishing components:

thyz — Ryt:cz — _Razzyz — _thyt — _Rytxt — _Ryzmz — a5 h><

Geodesic deviation equation tells us that GWs generate a time varying tidal field
1

SR“O‘VB 2P + O(x?)

Can be seen more directly in locally inertial Fermi Normal coordinates. Recall that Guv = TNur —

o 4 _ . . . . 1
=  ds’ = —d?(1+Rtitj:7:%J)—§ dtdz’ (Ryji2’ ") +dz' dz’ (6ij—§Rz-kﬂa‘:’“:7:l)

1.. _
= —dP® + dz® + dif? + dz + (hx (t = 2)2y + Sh(t = 2)(@° - @2)> (dt — dz)*



Fermi Normal Coordinates

1. 3
ds?® = —dt* + dz* + dy* + dz° + (hx (t — 2)zy + 5h+(t — 2)(x* — y—2)) (dt — dz)?

Remarkably, while FNC are only valid locally, this particular form for the metric is valid globally.
See [ M. Rakhmanov, Class. Quantum Grav. 31 (2014) 0850006}

To leading order, the FNC and TT coordinates are related via

1 1, _ 1_,_ . _
x:x—§h+w—§hxy—§z(xh+ Y hy)
1, _ 1 _ 1_, . o
y:y—|——h y——hxx—|——z(yh —gjhx) We see that the wave gets
2 2 2 put into the TT coordinates
I NN 1__
z2=Z+ —(x° =y )hy + =2y h«
4 2
_ 1, 5 5 L__
t:t—i(azz—yQ)hjL—ixyhx



Fermi Normal Coordinates

1. 3
ds?® = —dt* + dz* + dy* + dz° + (hx (t — 2)zy + 5h+(t — 2)(x* — y—2)) (dt — dz)?

Geodesic equation for a test mass in FNC:

2_
CZZT;E ~ %jh_l_ + %gﬁx Using the long wavelength limit:
o 27
P s U
d*z
RN 0
dt?

For the general expression, valid everywhere, see [ M. Rakhmanov, Class. Quantum Grav. 31 (2014) 085000



Fermi Normal Coordinates

d’7 1 . 1 . dy 1 - 1 ..
—— ~ —h —uh — ~ —th. — =uh
gz gt T gy giz 9t T gl

Ring of test particles, initially with & = L cos®, ¢y = Lsing, Zz =10

= x=1L (Cosqb—l— % (cos ¢ hy ‘|‘Sin¢h><))

H
=
=
>
.
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Generating Gravitational VWaves

h,, = —1671,,

Solution via Green’s function: iLLW (f) — —167 / d4$,G(f — f/)TuV (f/)

Wh GZ—-7) = : oO(t tl ) s Gz -2 = 6%z
ere (¥ —7") = p—— (tret — tror)  satisfies (X —2") = 0% (& —

The retarded time is defined as usual: lret =T — \X — X/\

= Bl =4 [ dt SO
uv \bs —



(Generating waves In the | | gauge

1
The general solution can be expressed in the TT gauge by using the 4-index projection tensor Ak = P Pj; — §Pz-j P

Which is defined in terms of the 2-index projection tensor ~ P;; = 0;; — n;n;

The P projection removes and components along the propagation direction, and the Lambda projection additionally removes the trace

TT 1 Kkl
hij — Az‘j ki h
Denoting the extent of the source by d, and the distance to a distance observer by r, we can approximate:

d2
\X—X’|:7“—X’-f1—|—0(—>

r

4
= hg;-T — ;Aijkl/d?’x’ T (t—r+x"-n, x)



Post-Newtonian Expansion

4
hiit = =N / Pz Ty (t —r +x'-n, x')
7)

In the limit that the material is moving at low velocities we can expand:

| 1 o
Tt —r+x" -0, x")~ Tyt —r)+an" 0Ty + ix;x;nznj 07T + . ..
1 ' . 1 ) '
= h;-ro(t, X) = ;Aijkl SEt— 1) + N SET(t — 1) + inmnpSklmp(t —r)+...

Here we have introduced the multipole moments

SY(t) = /d?’x' T (t,x") SUF(¢) = /dga:’ T (¢, x")a'" SUFP (1) = /dga;" T (t,x)x'"z'P



Post-Newtonian Expansion

The lowest order multipole moment dominates for slow moving sources. It is related to mass quadrupole moment

QY (t) = /dBﬂ?Ttt(t,X) r'r! A /dgmp(t,x) r'

QY (t) = /d3x O'Ty (t,x) x'2) = —/dgx 0 Ty (t,x) x'a? = /d?’az (Ttixj +thxi) — %T“dezs

Q" (t) = —/dga:' (OrT " (t,x) 27 + O T (t,x) 2") = Q/d‘?’:v T (t,x) — %(Tkixj\ﬁ{iji)nksz

> S = 509



Post-Newtonian Expansion

9 . 9 .
Lowest order, Quadrupole approximation: h;.z;.T (t, X) — _Az'jkl Qk’l(t _ 7“) — _ QT.T
r r

Applying the projections for a wave traveling in the z direction

i (8) = (Qualt =) = Gyt~ 1)

e (£) = =Gy (t — 1)

(A

In Lecture 5 we will apply this formalism to binary systems.



cnergy carried by gravitational waves

Expand Einstein equations to next order Juv — Nuv + h'uy + fw/ |f,uu‘ ~ |huy\2
1 L 2 L 2

G'Y)(h) = 87T}, G2)(f) = 877y (h?)

Energy Momentum Tensor for GWs AT ! <@ h 8 pITY k> (GW energy can’t be localized)
HY 327
Traceless T [f = 0 Conserved 0"t wy — 0
In spherical coordinates Tet = Tpp = —Tpp = L( hlt|?) = <\Q | )
tt — 1rr — tr — 297 19 QT 7‘2 ]

. dE
Energy radiated R 2 2 = =
qy = 7{7'”. r< sin” O0do T



cnergy, Momentum and Angular Momentum
carried by gravitational waves

dE 7°2 . . ..
£ diated — = — [ dQ(hITRY
nergy raaiate dt 39 < 17 TT>
dP* 1 : 2 (responsible for BH kicks)
! U radiated a dQ (hTT ok pid "
iInear momentum radiate o 29 / < i ] TT>
dJ" 1

=g [ AN hay — M hg kb

Angular momentum radiated




