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Gravitational wave data

Detector operation

Astrophysical inference

Detection confidence, Astrophysical rate and
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Astrophysical Inference

Would like to know merger rate to
constrain population synthesis
models. Even better, would like to
KNOW merger rate as a function of
mass, spin, redshift etc
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GW150914 Have to account for uncertainties
L in detections, both probability an
Bidydols event Is real, and uncertainties In
the inferred parameters. Also have

GW151226 - to account for selection bias

GW170104

LVT151012

Many cool techniques being developed to do this using
methods such as mixture models, (Gaussian processes etc



Population inference

Can only constrain very simple models with just the first 4 detections

e.g. power law in the mass of the heaviest component, flat in mass ratio p(my, ma) o - 1m
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Astrophysical Merger Rate: Simple Version

Even without a detection we can produce Interesting astrophysical results such as bounds on the binary merger rate for NS-NS

Expect binary mergers to be a Poisson process. If the expected number of events is A\,
then the probabillity of detecting k events Is

p(kIX\) = Xe k!

f the event rate is R [Mpc® year '] , and the observable 4-volume is VT [Mpc?® year]

A=RVT

The probability of observing zero events (k=0) is then

p(R)=VTe VT

Follows from  p(0|]A) = p(R)dR = e  BV1



Astrophysical Rate Limits

p(R)=VTe tVE

The probability distribution is peaked at a rate of zero. A 90% rate upper limit can be computed:

R,
/ p(R)YAR=1—e "1 =0.9
0

= R, VT =1In(0.1)
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e.g.

NS-NS Detections

4
NS-NS Merger Rate, aLIGO at design sensitivity V= g(zoo Mpc)?
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Astrophysical Rate Limits

When a signal Is detected the probability distribution for the rate is no longer peaked
at zero. For example, with a single detection (k=1) we have

p(R) = R(VT)*e """

This distribution Is peaked at

1
Vi

R =

The 90% confidence interval now sets upper and lower limits on the merger rate.



NS-NS Detections
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NS-NS Detections
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NS-NS Detections
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NS-NS Detections
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Simulated NS-NS Merger Rate Constraints
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Slide from WVU colloguium, Feb 2017

Plausible Observing Run Timeline

Binary Neutron
Star range

65-80 Mpc  60-100 Mpc 120-170 Mpc 200 Mpc
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Solar Masses
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Selection Effects: Binary Systems

MO/
2 4 assumin e mass is not so large that the
,02 e D2 (1 _I_ 6 COS L _I_ COS [/) éignal gegstgut—off in the dtetecltiogn btgnél;h
L

- More sensitive to nearby sources
- More sensitive to high mass systems

- More sensitive to face on/off systems

Can avoid any biases in population inference by including foreground
and background events and their parameter dependencies



Incorporating Detection Uncertainty and
Parameter Dependence in Merger Rate Inference

[Messenger & Veitch, New Journal of Physics, 15, 053027 (2013)]
[Farr, Gair, Mandel & Cutler, Phys. Rev. D 91, 023005, (2015)]

Any analysis which attempts to draw inferences from a population of signals or events which come from a search with a detection
threshold are vulnerable to selection bias if the population of detected signals does not match that of the underlying sources

Bias can be avoided by accounting for events that are thrown away (which will include signals and noise)
and the uncertain nature of events that are kept (which will include signals and noise)



Toy Example: Neutron Star Mergers

[Messenger & Veitch, New Journal of Physics, 15, 053027 (2013)]

Neutron star population with mean mass m = 1.2 M
and variance o,, = 0.1 Mg

Merger rate R =10""Mpc °yr*

Assume zero uncertainty in measured masses, but include uncertainty in detection (false positives and false dismissals)

df

Assume SNR based detection threshold pgpt —

5 AM5/3 /fmax f—7/3
967r4/3D% Foin Sn(f)



Toy Example: Neutron Star Mergers

Most events will have low SNR, and will be thrown away if we set a high detection threshold - this wastes information

1 , 1
Popt ™~ 75— p(Dr) ~ Dy = p(popt) ~ ——
DL popt

Break the analysis up into K small time intervals so the probability of detection in each interval At is small:

p(H_I_ |K) — RV At Prior probability of a detection

p(?-[_ |K) =1 — RVAt Prior probability of no detection

—

A= (R,m,om) Model parameters (merger rate, average mass, spread in masses)
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Toy Example: Neutron Star Mergers

True detection False detection

-/ \

False dismissal True dismissal

Need to include all the information, detections and non-detections, whether true or not



HMm (MO)

Toy Example: Neutron Star Mergers

Including low significance detections
----------------- Excluding low significance detections
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Bottom line: Much better to use all the detections, confident to not



What next for gravitational wave astronomy®

What are the big unsolved problems”



