Induced radioactivity and energy deposition studies for a H⁰/H⁻ dump at 160 MeV

R. Versaci, A. Mereghetti, M. Silari, R. Chamizo

Outline

- LINAC4 @ CERN
- Motivations
- Problem description
- Results

CERN Accelerator Complex

First step in the chain is LINAC2

needs an upgrade because of the aging of the technologies (1978)

LINAC4

CERN Accelerator Complex

Proposal for a Superconducting Proton Linac (SPL)

The first part, called LINAC4, will be used to inject 160 MeV

PSB injection

PSB has four rings \Rightarrow four stripping foils and four dumps

Motivations

1-Choice of the dump material

Graphite, boron nitride or aluminum nitride?

Energy deposition and activation to be considered

2-Possibility of the insertion of BLM to control the status of the stripping foils

Signal above threshold and below saturation
The four PSB rings have to be taken into account

Simulations with FLUKA Monte Carlo

Geometry

Very simple, accounts also for tunnel walls

Beam description

Nominal operation

# particles pe	er beam p	oulse	10^{14}
----------------	-----------	-------	-----------

Beam pulse frequency 1.11 Hz

Pulse length 4 · 10⁻⁴ s

Peak current 0.04 A

Average current 0.018 · 10⁻³ A

Stripping efficiency 0.98

impinging particles per dump 5.55 · 10¹¹ s⁻¹

 $\sigma_{_{\!\scriptscriptstyle V}}$ 3 mm

 σ_{h} 2 mm

Days of operation 200

Energy deposition

H⁰ beam impinging on the graphite dump

Unit: J cm⁻³ per pulse

Energy deposition

Top view of the H^o beam impinging on the three dumps

Unit: J cm⁻³ per pulse

Ambient dose equivalent rate H*(10)

Dump material: graphite

Cooling time: 1 week

Unit: μSv/h

Ambient dose equivalent rate H*(10)

Ambient dose equivalent rate H*(10)

BLM study

Function to simulate 3D grid of BLMs (cell: $5 \text{ cm} \times 5 \text{ cm} \times 5 \text{ cm}$) without need to implement BLMs in the FLUKA geometry

Uncertainty on energy deposited expected at most 5-10%

Results compared with four BLMs actually implemented in the FLUKA geometry as cross-check:

less than 1% discrepancy observed

BLM study

In our case, 8 separated simulations performed: 2 beams (H^0 and H^-) \times 4 dumps (one per each PSB ring)

Linear combination of the 8 output matrices allows to study the aging of the stripping foils and the event of failure

Conclusions

Aluminum nitride favored by energy deposition because of higher density

but suffers of higher ambient dose equivalent rate

Graphite and boron nitride are similar

A shield surrounding the dump could be considered to reduce the fraction of energy escaping vertically

Also interesting to evaluate the possibility to increase the dump width with z

Conclusions

Expected ~10⁻⁸ pC cm⁻³ per primary in a BLM

Corresponding to O(10⁻⁶) C s⁻¹

In the middle of the BLMs operating range (saturation at $O(10^{-6})$ C s⁻¹)

Use of BLMs seems possible

Very interesting function "to insert" BLMs in FLUKA