

Shielding Design for the ETOILE Hadron Therapy Center

F. Stichelbaut SATIF-10 CERN, June 3rd, 2010

Introduction

- IBA Company is the industry leader in proton therapy technology with 16 PTcenters installed or in construction in the world.
- IBA has submitted an offer to the Groupement de Coopération Sanitaire (GCS) to build the ETOILE hadron therapy system in Lyon (France).
- This center will be build around a superconducting cyclotron able to accelerate:
 - $^{12}C^{6+}$, $^{10}B^{5+}$, $^{6}Li^{3+}$ and $^{4}He^{2+}$ ion beams to 400 MeV/u
 - Proton beams to 260 MeV
- The ions will be extracted by electrostatic deflector.
- An Energy Selection System (ESS) is used to modulate in energy the beam extracted from the cyclotron.
- ETOILE center will be equipped with 4 treatment rooms: 2 gantry rooms and 2 fixed beam rooms.

IBA C400 Cyclotron

ETOILE Layout

Radiation Source Determination

Primary ion beams can interact with different materials during their travel:

- Graphite degrader (C)
- Beam transport elements (Cu, Fe)
- Patient or water phantom
- Secondary particle production has been computed using PHITS code for ¹H, ⁴He, ⁶Li, ¹⁰B and ¹²C ions impinging on:
 - thick Cu and H₂O targets;
 - C targets with variable thicknesses.

PHITS results have been benchmarked on HIMAC data for ¹²C and ⁴He ions stopping in C and Cu.

Neutron Angular Distributions

→ ¹²C: The neutron yield evolution with polar angle Θ is very well reproduced by PHITS at all energies, except for Θ = 0°
→ ⁴He: Good agreement for Θ > 30°.

Doubly-differential Thick Target Yields

Neutron Thick Target Yields

Secondary Charged Particles

Besides secondary neutrons and photons, charged particles will also be produced: protons, deuteron, alpha, …

These heavy particles are strongly forward-peaked.

Secondary Particles from Degrader (1)

- Ion beams are extracted from the C400 cyclotron with fixed beam energy (400 MeV/u)
- Energy modulation is performed thanks to a graphite wheel with variable thickness.
- As the degrader is a thin target, some charged ions can leave the degrader and follow the beam line.

Secondary Particles from Degrader (2)

Yield of parasitic ions transmitted by ESS per transmitted ion

Demonstrating Critical Source Parameters

- To determine the parameters of the attenuation laws for secondary particles, we use a simple MCNPX model.
- Shell filled with standard concrete (ρ = 2.3 g/cm³) with an inner radius of 1 m and an outer radius of 4 m.
- The neutron source is put at the origin, the primary beam being aligned along X axis.
- **Study influence of:**
 - Ion species
 - Beam energy
 - Target type
 - Emission angle

Neutrons, Photons and Charged Particles Contributions

Neutron Tenth-Value Thickness

Attenuation curves fitted in two parts \rightarrow TVT (r < 00 cm) and TVT (r >

 \rightarrow TVT₀ (r < 90 cm) and TVT_e (r > 90 cm).

- **Small dependance of TVT**_e values on the target type
- For ions with energy values leading to same range in water, TVT_e values increase with ion mass.

Energy Selection System (ESS) Transmission Efficiency (1)

ESS Transmission Efficiency (2)

ESS Transmission Efficiency (3)

ETOILE Modelling with MCNPX 2.5.0

RadioProtection Assumptions

Shielding design based on French regulation:

- Public area: $E_T < 80 \ \mu Sv/month$
- **•** Monitored area: $E_T < 7.5 \mu Sv/hour$
- **Controlled area**: $E_T < 25 \mu Sv/hour$
- For the monitored and controlled areas, the worst hour must be considered.
- Detailed RP assumptions published by GCS to compute the hourly and monthly dose rates inside and outside ETOILE center using ¹H, ⁴He and ¹²C beams.
- Here, present two cases of hourly dose rates obtained for a continuous irradiation of water phantom with monoenergetic beams, assuming a delivered dose of 2 Gy/min in 1 liter target.

Results: Cyclotron Room

Results: Carbon Gantry Room (1)

Hourly dose rate in GTRC for a dose deposition of 2 Gy/min in water phantom

Results: Carbon Gantry Room (2)

Modeling of GSI Experiment

- Modeling of GSI Cave A using PHITS + MCNPX.
- Use published concrete composition and density [1].
- Scoring regions simulated by void spheres of 20 cm diameter located 75 cm below the beam level.
- Ambient dose equivalent H*(10) computed using fluence-to-dose coefficients for neutrons, protons and photons from ICRP-74 and Pellicioni.
- Separate runs performed for each of the radiation sources computed by PHITS (n, γ, ¹H, ²H, ⁴He).

Results: Ambient Dose Equivalents (1)

- Comparison of the ambient dose equivalents obtained at the various OC locations with:
 - PHITS: this analysis using PHITS and MCNPX.
 - FLUKA: average of results obtained with FLUKA and MCNPX codes [1].
 - Data: measurements obtained using Bonner spheres [1].

Results: Ambient Dose Equivalents (2)

Technology

Thank you...