
LZ4	Compression	Library

Zhe	Zhang

Agenda

•  LZ4	on	a	CMS	file	
•  LZ4	on	dummy	files

Agenda

•  LZ4	on	a	CMS	file	
•  LZ4	on	dummy	files

Distribu<on	of	Block	Size
CMS	file:		

hCps://root.cern.ch/files/CMS_7250E9A5-682D-DF11-8701-002618943934.root	

Distribu<on	of	Block	Size

Most	of	baskets	in	this	CMS	file:	<	20	KB

Compressing	Time(I)

0	

1000	

2000	

3000	

4000	

5000	

6000	

Ti
m
e	
(s
)	

Algorithms	

Compression	Time	(Lower	is	be6er)	

•  LZMA	took	long	<me	
to	compress	data	

•  LZ4	is	faster	than	
ZLIB	at	same	
compression	level	

Compressing	Time(II)

•  Compression	speed	
of	ROOT(Zlib-6)	is	
between	LZHC-5	and	
LZHC-9	

0	

50	

100	

150	

200	

250	

300	

ZLIB-1	 ZLIB-6	 LZ4	 LZ4HC-5	 LZ4HC-9	

Ti
m
e	
(s
)	

Algorithms	

Compression	Time	(LZ4	vs	ZLIB)	

Decompressing	Time(I)

•  LZMA	are	slowest	at	
all	compression	levels	

•  LZ4	are	fastest	at	all	
compression	levels	

0	

50	

100	

150	

200	

250	

Ti
m
e	
(s
)	

Algorithms	

Decompression	Time	(Lower	is	be6er)	

Decompressing	Time(II)

•  LZ4	is	4-7	<mes	
faster	than	
ROOT(Zlib-6)	

0	

5	

10	

15	

20	

25	

ZLIB-1	 ZLIB-6	 LZ4	 LZ4HC-5	 LZ4HC-9	

Ti
m
e	
(s
)	

Algorithms	

Decompression	Time	(LZ4	vs	ZLIB)	

Compression	Ra<o

•  LZMA	has	highest	
compression	ra<os	at	
all	levels	

•  LZ4HC-5	and	-9	are	
between	Zlib-1	and	
Zlib-6(ROOT)	

0	

1	

2	

3	

4	

5	

6	

Compression	Ra@o	

Agenda

•  LZ4	on	a	CMS	file	
•  LZ4	on	dummy	files

Test	Setup

•  Each	dummy	object	contains	mul<ple	FPs	
•  Dummy	object’s	size	is	ranging	from	40	B	to	4	MB	
•  All	tests	contain	equal	amount	of	object	data	
	
Etc.	
Each	object	size	=	4	MB,	#	of	object	=	100	
Each	object	size	=	400	KB,	#	of	object	=	1,000	
Each	object	size	=	40	KB,	#	of	object	=	10,000	
Each	object	size	=	4	KB,	#	of	object	=	100,000	
Each	object	size	=	400	B,	#	of	object	=	1,000,000	
Each	object	size	=	40	B,	#	of	object	=	10,000,000	

Distribu<on	of	Baskets

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

1,000,000*4	 100,000*4	 10,000*4	 1,000*4	 100*4	 10*4	

#	
of
	B
as
ke
ts
	

Object	Size(#	of	FPs	*	4	Bytes)	

Baskets	in	Tree	

Number	of	Baskets	in	fDummy	Array	

Number	of	Baskets	in	Other	Branches	

•  Most	of	data	are	stored	in	the	branch	of	fDummy	array,	too	
large	or	too	small	objects	generate	more	baskets	

•  Smaller	objects	generate	more	baskets	in	other	branches	
(etc.	fRefTable,	fSize)	

Compressing	Time

0	

50	

100	

150	

200	

250	

Ti
m
e	
(s
)	

Object	Size	(#	of	FPs	*	4	Bytes)	

Compressing	Time(lower	is	be6er)	

zlib-1	

zlib-6	

lz4-1	

lz4-5	

lz4-9	

•  Compressing	Time:	
LZ4-9	>	ZLIB-6	>	LZ4-5	
>	ZLIB-1	>	LZ4-1	

Decompressing	Time

•  LZ4	outperforms	
ZLIB	at	all	levels.	

0	

0.5	

1	

1.5	

2	

2.5	

3	

Ti
jm

e	
(s
)	

Object	Size(#	of	FPs	*	4	Bytes)	

Decompressing	Time(lower	is	be6er)	

zlib-1	

zlib-6	

lz4-1	

lz4-5	

lz4-9	

Decompressing	Time(ZLIB)

0	

1	

2	

3	

4	

5	

6	

7	

8	

1,000,000*4	 100,000*4	 10,000*4	 1,000*4	 100*4	 10*4	

Ti
m
e	
(s
)	

Object	Size	(#	of	FPs	*	4	Bytes)	

Decompressing	Time	of	ZLIB(lower	is	be6er)	

zlib-1(Compression	Only)	

zlib-1(Total	CPU	Time)	

zlib-6(Compression	Only)	

zlib-6(Total	CPU	Time)	

•  A	majority	of	CPU	cycles	are	spent	on	doing	decompression	
•  S<ll	a	significant	por<on	are	doing	something	else(etc.	

deserializa<on)	
•  As	object	size	becomes	<ny,	more	CPU	cycles	are	consumed	by	

other	stuff	

Decompressing	Time(LZ4)

0	

1	

2	

3	

4	

5	

6	

1,000,000*4	 100,000*4	 10,000*4	 1,000*4	 100*4	 10*4	

Ti
m
e	
(s
)	

Object	Size	(#	of	FPs	*	4	Bytes)	

Decompressing	Time	of	LZ4	(lower	is	be6er)	

lz4-1(Compression	Only)	

lz4-1(Total	CPU	Time)	

lz4-5(Compression	Only)	

lz4-5(Total	CPU	Time)	

lz4-9(Compression	Only)	

lz4-9(Total	CPU	Time)	

•  Since	LZ4	has	faster	decompressing	speed,	other	
work	(etc.	deserializa<on)	seems	to	contribute	more	

Compression	Factor

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

Fa
ct
or
	

Object	Size	(#	of	FPs	*	4	Bytes)	

Compression	Factor	(Higher	is	be6er)	

zlib-1	

zlib-6	

lz4-1	

lz4-5	

lz4-9	

•  LZ4	is	not	storage	
efficient	comparing	
to	ZLIB	

Conclusions

•  Compression	Time:	
– LZ4-9	>	ZLIB-6	>	LZ4-5	>	ZLIB-1	>	LZ4-1	

•  Decompression	Time:	
– LZ4	outperforms	ZLIB	

•  Compression	Ra<o:	
– For	large	baskets,	Zlib	has	higher	compression	
ra<o	than	LZ4	

Appendix:	Basket	Sizes
Object	Size	=	4M Object	Size	=	400K Object	Size	=	40K

Object	Size	=	4K Object	Size	=	400B Object	Size	=	40B

Appendix:	Compressing	Time	of	ZLIB

0	

20	

40	

60	

80	

100	

120	

140	

1,000,000*4	 100,000*4	 10,000*4	 1,000*4	 100*4	 10*4	

Ti
m
e	
(s
)	

Object	Size	(#	of	FPs	*	4	Bytes)	

Compressing	Time	of	ZLIB(lower	is	be6er)	

zlib-1(CO)	

zlib-1(CPU)	

zlib-6(CO)	

zlib-6(CPU)	

Appendix:	Compressing	Time	of	LZ4

0	

50	

100	

150	

200	

250	

1,000,000*4	 100,000*4	 10,000*4	 1,000*4	 100*4	 10*4	

Ti
m
e	
(s
)	

Object	Size	(#	of	FPs	*	4Bytes)	

Compressing	Time	of	LZ4(lower	is	be6er)	

lz4-1(CO)	

lz4-1(CPU)	

lz4-5(CO)	

lz4-5(CPU)	

lz4-9(CO)	

lz4-9(CPU)	

