Diagnostics and measurements
Special thanks to D. Reschke (DESY)
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Vertical test of SRF cavity

* Acceptance test of the cavity received from industry
'~' * Check of a special treatment
_» Goals: Determine Qg vs. E4-. and Qg vs. T.

* Operation in CW or with long pulses.
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Vertical test preparation

Cavity ready (after cleanroom work),

Evacuated, leak-checked to < 1071% mbar - 1/s, RGA (residual gas analysis)
checked,

Mechanical assembly to the test insert,
Vacuum connection, pumping, leak check + RGA,

Connection of rf-cables incl. checks (short circuit, time-domain reflectometer
measurement),

Assembly + check of diagnostics (Second sound, temperature mapping, x-ray
sensors, ...),

Transport to vertical cryostat

Preparation and test of interlock systems
Cool-down to 4.5 K or 2 K, (maybe with holding at 100 K)
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RF Set-up for vertical test |

y * Cavity is coupled to RF with
* input antenna, matched or adjustable to expected Q,

e pick-up probe for transmitted power with weak
coupling (Qprans =~ 102 ...103 Q,) Scope[ 9Tl f6n G
» for simplification, other ports (HOM) ignored here.

RF Generator CW amplifier

¢ =—— N>

g |

= pulse

3| Hz modulation
(@]

FM ext.

%) * Directly measurable:

* Eigenfrequency f.
* Decaytime . ref. G N
* Forward power Py, reflected power P., transmitted poverl E{@:Zﬁﬁiﬁd / ]
\ power P; (in pulsed also emptying power P,) pOWGFE K transmitted N
&4 ¢ Sharp resonance (FWHM can be < 1 Hz!) metr é i

requires PLL

* PLL: fraction of P, and Pr are mixed and down-
converted, their phased difference is used to control f.
A = 0 & cavity on resonance.

Vertical cryostat

N[
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RF Set-up for vertical test Il

\ ° Frequency counter RF Generator — ampnier
) . =N (Lo > H
.. * PIN diode & function generator T 5 —
o . . . = |
e fast switching of the RF signal, 2| (3| Hz 2 ﬁq%
* typically a rectangular pulse by the function generator. Scope/ger \mi;)
%7 * CW amplifier | ORT TRt
Z e typically up to 1 kW | PLL | LogAmp |
L : ! downconverters |
) /L * Solid-state is state-of-the-art ] B
2  Water- or air cooled ¥
e Important: Circulator el & VM -
P ; power)‘: | forward ),
* Power measurement in steady state meter[l \— [S|reflected
i Dower ] transmitted l
Power meter eter 2] 2
E
* Power measurement for pulses =
®

* Scope with crystal detectors or logarithmic amplifiers
* ADCs

Vertical cryostat

Passive components: directional couplers,
attenuators, cables.
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RF set- ups

AMTF DESY 1. 3GHz for XFEL caV|t|es JLAB 0. 5 3GHz VCO PLL system for R&D
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Interlocks

* SRF cavities can “produce” significant amounts of hazardous x-rays with

‘gf‘ comparatively low RF power!

-\‘ ' » RF measurements direct at the cryostat require exact rules and limits
N f_‘ depending on your local test situation.
%
/’f * For high gradient measurements
nean appropriate shielding and

operational interlock system is
mandatory.
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, . * Step 5: Calculation of Q:

- 1 1 Py Py
Q= Q ( n ﬁ( + Ploss) + Plos)

 Step 6: Calculation of E;:

\/R/Q ’ Q() PlOSS

[-n

Eacc —
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Temperature Mapping

)
, & _* Measure the temperature on the He-side to detect losses on the RF-side
— *T;"'l’h * Developed in the 1970es at Stanford + CERN SO s - e

for normal-fluid / sub-cooled helium

B = bakelite Insularcion

= carbon bedy of
rrrrrrr

B = gap filledl with
conduction silver

E = copper beryllium
spring

Cross section of the
carbon thermometer

Rotating thermometry system
used at CERN for 352 MHz
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Temperature Mapping in superfluid He

* In superfluid He (necessary for high gradients at f; > 1 GHz):
' * + BCS losses are suppressed

* + spatial resolution is increased

» - “efficiency” of thermometers is reduced due to extremely good cooling
for fixed thermometers: 20-40% with strong variations
for movable thermometers: < 3%

ay/  * Basic component is a heat sensitive element with a strong characteristic
line at low temperatures: mostly carbon resistors

Pogostick

Manganin Wires

—_—

Stycast Epoxy

G-10 Housing
AL
GE-Varnish ’: /»5/ it
Allen-Bradley carbon
i Allen-Bradley Resistor (100 ©, p
resistor 100 Q, 1/8 W en-Bradiey Resistor (100.0) a

- <—0.4 cm—e (X-AA

1
4.2K: = 1 kQ al —
1.8K: > 10 kQ “Pogostick” Thermometer (Cornell) Cernox® resistors




Ethernet

PCIL- MIC- 18X
Intel PIII, LINUX 12 I 1100

CPU ' Power Multi plex
Supply Chassis 1 Chassis 2

Tricé Measurement of
rigger 768 differential
channels

Ve pary Cold part
Temperature
S00kChrn

Mapping at
RF' One g
charmnel

System 500 Ot
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* + Fast read-out (= sec)
* + Sensitive: AT = 0,1 mK can be detected
e -Sensitive cabling

* - |ntensive maintenance necessary

g | : : - 1
A ; 1 3 /
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Temperature Mapping: Fixed Systems Il

_* Fixed systems are most complex, but most powerful:
- 1) Qualitative analysis = quench location (easy)
 2) Semi-quantitative analysis = AT vs. E..
* 3) Quantitative analysis = R cq;c from AT (requires additional calibration)
* 4) time resolved measurements = temperature (quench) evolution

7 * Example 1: Locating the quench and the temperature distribution
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T mappmg — rotatlng systems

* Quench detection + time-resolved measurements
 Less thermometers for multi-cell cavities
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First sound — pressure wave
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Second sound - temperature wave
Excited by heat on a wall
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Oscillating SuperLeak Transducers (OST) Thermometry

« Sensing of the relative movement of the two * Measurement of the temperature variation with fast
components response, highly sensitive thermometers

« Commercial sensors like Cernox bare chip sensors

2

Source:
Lakeshore website

Superfluid leak
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* Transition edge sensors
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(left)

Complex assembly for each test
required.
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(right)

* Simple and one-time assembly
at the cryostat insert

* Fast measurement
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Quench localisation with second sound

* » Knowledge of the second sound velocity, the origin of
7 the signal can be reconstructed by trilateration




Quench localisation Summary

* Uncertainties:
e Size of the OSTs or TESs,
* Heat distribution in Nb,

' A'fﬁ;
: &
- P~  ° Signal analysis
o

* Measurement uncertainty typically O(cm).
e Comparison with T-Map:
Agreement with uncertainty of 1-2 cm







Normal RF signals

&] e Response for a cavity working well:

} Pr } b, P, } p,

/A




Py

VPP,

L.

.

-t

]

Py

Something is warming up

[\

* Additional losses appear during build-up time of the field

log(P;)

N\

1 t

The - 1 * Sudden changes in the power may hint towards a breakdown or gas

discharge in the transmission line.




Symptoms of a quench

_* RF signal of a thermal or magnetic breakdown (quench):
' * breakdown of transmitted power within = ms (thermal time constant)
e often self-pulsing

' Py f P,

-t t

... but no increase in X-rays observed, unless quench in the presence of FE or MP.




Symptoms of Field Emission

[ . }
Py log(P;)

... and simultaneously appearance of X-rays.




Symptoms of Multipactor (MP)

| Pt

— - |

* During cavity processing, these barriers slowly increase to eventually
disappear.

=rd o Often breakdowns of RF field happen during processing.

i . X-ray bursts observed at the moment of breakdown with active MP.
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Horizontal Cavity Tests

~* Horizontal cavity tests are important in order to a cavity full equipped
with its subsystems before a module integration

* Power coupler
* Tuner

* Piezo-Tuners

"« Check of cooling
conditions + flux

trapping

Horizontal cryostat at DESY
for high power pulsed
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Cryomodule testing

A] * Cryomodule tests for FLASH + EU-XFEL as example




Module Test Procedure

RF cables calibration

Technical interlocks/sensors

RF source / waveguides / LLRF
Warm input FPC conditioning
Cooldown to 2 K

Cavities spectra measurement
Cavities tuners test

Couplers Q; measurement

Cavities on resonance

10. Cold input FPC and cavities conditioning
1 11. Module performance measurement
12. Single cavities measurements

13. cryogenic system performance test

R O e =
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Cryomodule Test Bench
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Example: Cryosystem/cool-down test

T measurement: temperature sensors
(cavities/couplers + cryogenics) data are
stored.

~* Cavity resonance frequency measurement
during the cool-down.

* Cryogenic losses measurement based on
temperature and LHe flow data: 2 K, 4 K andiswn.0

Cavity t-mode resonance frequency vs LHe temperature

. ] { PXFEL3/CMTB a1

70 K static (infrastructure) and dynamic (RF = e o
power) losses. 12995 ] e
] —e—C5

* Optional: stretch-wire based module
dimensional changes measurements.

] <« C6
1299.0 4

1298.5 -

= mode frequency [MHz]

1298.0 -

0 50 100 150 200 250 300

temperature [K]
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=¥ End of Diagnostics and
}q) Measurements

V'
. « Thank you very much!

) &




