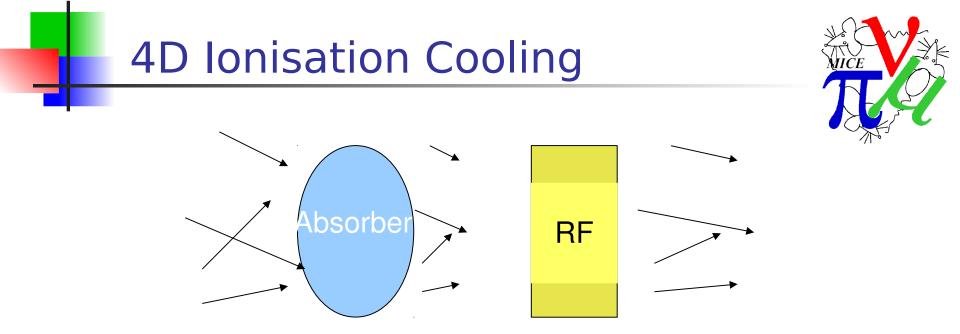
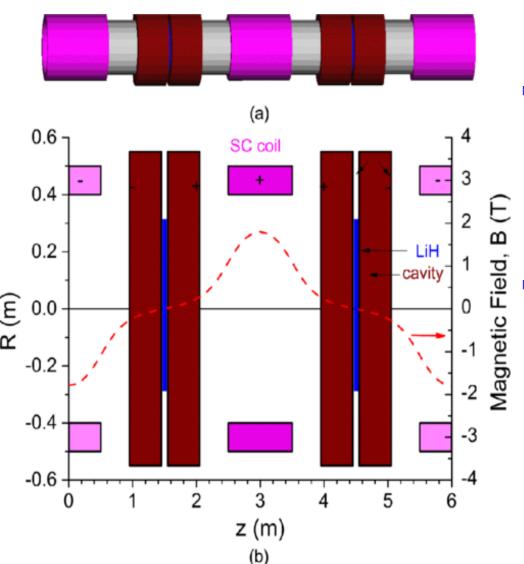

Physics Coordinators Report



C. Rogers, ISIS Intense Beams Group Rutherford Appleton Laboratory

Physics Report

- Step IV is almost complete
- Struggling to fund Demonstration of Ionisation cooling
- Worth taking stock
 - What does MICE aim to achieve
 - What has/will MICE achieve at Step IV?
- Some context from the accelerator world



4D (transverse) cooling achieved by ionisation energy loss


- Absorber removes momentum in all directions
- RF cavity replaces momentum only in longitudinal direction
- End up with beam that is more straight
- Stochastic effects ruin cooling
 - Multiple Coulomb Scattering increases transverse emittance
 - Energy straggling increases longitudinal emittance
- Needed in IDS-NF to improve muon capture
- Needed in Muon Collider to provide luminosity

FS2A Muon Front End

- WICE
- Baseline lattice for Neutrino Factory Muon Front End
 - Singlet lattice with alternating +- coils
 - Cell length ranging between 1-2 m
 - This has been the NF cooling lattice design since ~2005
 - Mature, stable on paper
 - Some discussion of 6D cooling approach

Questions



- Questions to answer (copied from CM40)
 - Step IV stuff is in **bold**
 - I only list beam-based questions
- Magnetics
 - Did we do the alignment well enough?
 - Do we understand the linear beam optics?
 - Do we understand the non-linear beam optics?
 - Do we understand the resonance structure/stop bands?

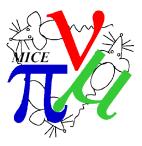
Absorber

- Do we understand MCS?
- Do we understand Energy Loss?
- What about longitudinal-transverse correlations?
- What about high Bz?
- What about polarisation?
- What about funny absorber geometry? And materials?

Questions (2)

RF

- Do we understand the RF beam dynamics when RF is superimposed on solenoids
 - Probably no one has studied this problem
 - Certainly not higher order terms
- What about alignment?
- What about stability across the RF pulse?
- Integration
 - Do we see the expected emittance change?
 - Transverse?
 - Longitudinal?
 - Emittance exchange?
 - Do we see the expected transmission
 - Have we correctly modelled our apertures?


Answers (1)

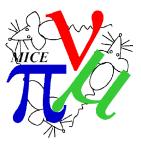
Did we do the (magnetic) alignment well enough?

- The physical bore of the magnets has been aligned carefully
- The relationship between the physical bore of the magnets and the actual coils is unclear
- A detailed field mapping programme was carried out
 - But the SS field map was not tied in to the survey fiducials!
 - Guess work based on knowledge of the flange positions required
- Position of the magnetic axis was never written up (not a MICE note)
- Analysis of field off-axis is still ongoing
- Simulation indicates the emittance reduction is not terribly sensitive to alignment – in one cell
- Analysis is ongoing
- Talk by Jo Langlands this morning

Answers (2)

Do we understand the linear beam optics

- The behaviour of the beam appears to tie in pretty well with the field map model
- Need to quantify "pretty well"
- Certainly not been written up yet
- Probably


Do we understand the non-linear beam optics

- Simulation indicates that we get quite a bit of emittance growth in SSD
- Sometimes appears in Match coil region (simulated)
- Some agreement between tracking and data
- No theoretical understanding

Probably not

- At the moment, this is covered by the emittance evolution paper (Wednesday morning)
 - Details could be studied as a separate analysis

Answers (3)

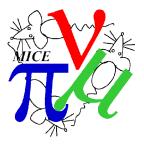
Do we understand MCS

- Currently analysis indicates strange momentum dependence
- Cross-checking analysis
- Analysis ongoing

Do we understand energy loss

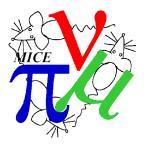
- Resolution appears insufficient for deconvolution analysis
- Convolution with Landau shows agreement with mean energy loss
- Landau width studies ongoing
- Probably
- Material physics session on Wednesday morning

Answers (4)

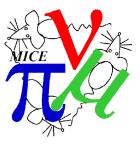


- What about longitudinal-transverse correlations in material physics?
 - We probably don't have the resolution for this

What about depolarisation from materials?


- Measure using decay positron spectrum in EMR
- Depolarisation in the EMR introduces too much systematic bias
- What about high Bz?
 - No analysis done
- What about funny absorber geometry? And materials?
 - Wedge absorber it would be great to get this in the programme, but time pressure is considerable
 - We have taken data with Neon and Xenon there may be a measurable effect in the data
- Discussion of the programme to the end of Step IV on Thursday

Answers (5)

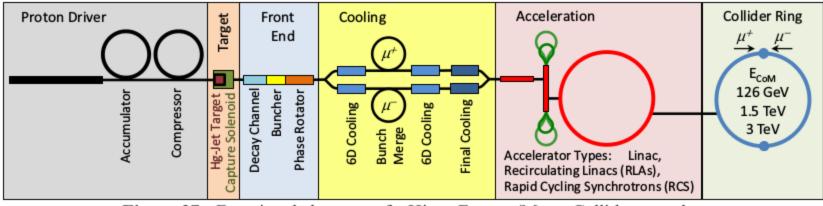

- Do we see the expected emittance change?
 - Transverse?
 - Longitudinal?
 - Emittance exchange?
- Have we correctly modelled our apertures?
- Analysis is ongoing as part of the emittance evolution analysis (Wednesday morning)

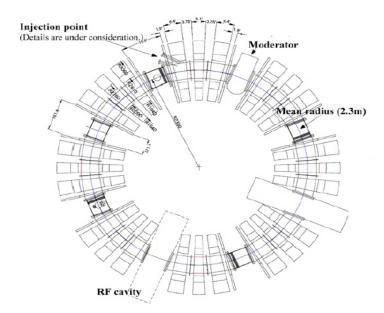
Context from Accelerator World

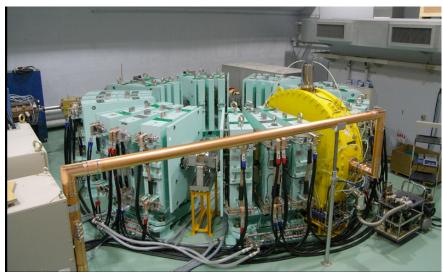
- Driven by users
- Muon acceleration for HEP
- Secondary particle production via internal targets
 - Neutron/radioisotope production
 - Muon production

Muon acceleration for HEP

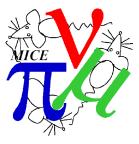
- Muon accelerators are big facilities
- Need high level funding/political clearance even for R&D
- Not much activity since end of MAP



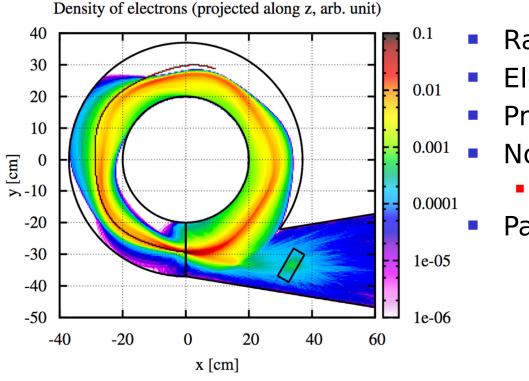

Figure 27: Functional elements of a Higgs Factory/Muon Collider complex



- Neutron production for medicine
 - Use internal target to enhance production
- ERIT scaling FFAG
 - FDF lattice
 - I1 MeV H- injection onto foil
 - 2.35 m radius with 8 sectors
- Large momentum acceptance
- Large horizontal acceptance
- Small vertical acceptance
- Finished running ?2012?


Y. Mori et al, Kyoto Univ RRI

Ring configuration	H_FFAG
Energy range	500MeV-800MeV
Magnetic rigidity	3.633 -4.877Tm
Lattice	FDF
Average radius	5.044-5.5m
Magnetic field(F)	1.96-2.41T
Magnetic field(D)	1.71-2.11T
Number of cell	8
Packing factor	0.7
Magnet opening angles	
Focusing	0.2032
Defocusing	0.1432
gap	0.01732
Geometrical field index	2.4
F/D ratio	1.1
k	2.4
Qh	0.2188
Qv	0.1797
ρf	2.0233m(2.411T)
ρd	2.3157m(2.106T)


MERIT

- High energy proton internal target
- Produce muons for nuclear waste transmutation
- Claim 10¹⁶ muons/second
- Use ERIT to prototype
 - Data taking autumn 2017

Y. Mori et al, Kyoto Univ RRI, FFAG16

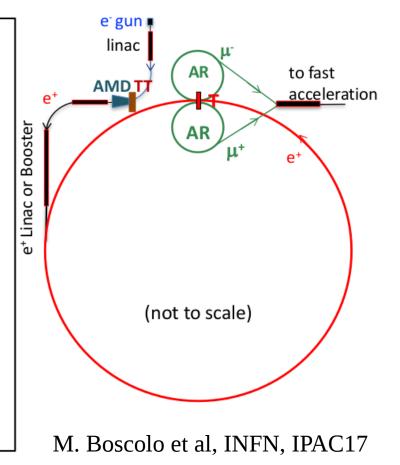
Photoproduction of rare isotopes

T. Planche and A. Laxdal, TRIUMF, IPAC17

Rare isotope production

- Electrons on internal target
- Produce photons for fission
- Non-adiabatic
 - 10-12 turns
- Paper study

Photoproduction of rare isotopes


$\begin{array}{c} \mbox{Preliminary scheme for} \\ \mbox{low emittance } \mu \mbox{ beam production} \end{array}$

Goal:

 $@T \approx 10^{11} \mu/s$ Efficiency $\approx 10^{-7}$ (with Be 3mm) \rightarrow $10^{18} e^{+}/s$ needed $@T \rightarrow$ e^{+} stored beam with T

need the largest possible lifetime to minimize positron source rate

LHeC like e+ source required rate with lifetime(e+) \approx 250 turns [i.e. 25% momentum aperture] \rightarrow n(µ)/n(e⁺ source) \approx 10⁻⁵

Conclusions

- Even without Demonstration of ionisation cooling, MICE¹ can answer many of the questions surrounding ionisation cooling
 - Serve the accelerator community by validating high energy muon accelerator programme
 - Demo would certainly add to our understanding
- Internal target machines are rather topical
 - Applicable to real world issues
 - Small, relatively easily funded
 - Validate much of the physics required for ionisation cooling