Novel Application of Density Estimation in MICE

- Tanaz Angelina Mohayai
- CM48
- June 28, 2017

Motivation

Measured Muon Beam Phase Space

- Real-life particle beam is non-Gaussian:
 - ★ Chromatic, non-linear effects cause heating.
 - ★ Beam loss affects cooling.
- Density Estimation (DE) techniques:
 - ★ Estimates probability density function (PDF) or phase-space density with no assumptions about the underlying distribution.

Reminder – Density Estimation (DE)

• Estimates the unknown Probability Density Function (PDF) using smooth weight functions (kernels) of certain widths, *h*.

- Two types covered:
- ★ Kernel Density Estimation (KDE): shown above.
- ★ Kernel-based Nearest Neighbor (NNDE): kernel widths are the distance between each data point and its near neighbor.

06.28.17

Error Analysis

• Common measure of error: mean integrated square error (MISE),

4

Simulation Study – PDF vs. Density

- ▶ 6-140 beam setting
- Evolution of 9th percentile contour (fixed muon count inside the contour).
- ▶ Phase-space PDF: slide 2's original KDE definition.
- ▶ Phase-space Density: scaled with sample size.

Simulation Study – Volume based on PDF vs. Density

- ▶ 6-140 beam setting
- Evolution of 9th percentile contour (fixed muon count inside the contour).
- ▶ Phase-space PDF: slide 2's original KDE definition.
- Phase-space Density: scaled with sample size.
- Volume measurement is robust against the choice of technique.

Simulation Study – PDF vs. Density

- ▶ 10-140 beam setting
- Evolution of 9th percentile contour (fixed muon count inside the contour).
- ▶ Phase-space PDF: slide 2's original KDE definition.
- Phase-space Density: scaled with sample size.

Simulation Study – Volume based on PDF vs. Density

- ▶ 10-140 beam setting
- Evolution of 9th percentile contour (fixed muon count inside the contour).
- ▶ Phase-space PDF: slide 2's original KDE definition.
- Phase-space Density: scaled with sample size.
- Volume measurement is robust against the choice of technique.

Toy MC Study – PDF vs. Density

- ▶ 6 mm beam passing through a LiH absorber only (no solenoids).
- Same transmission loss as the simulation study.
- Evolution of 9th percentile contour (fixed muon count inside the contour).
- ▶ Phase-space PDF: slide 2's original KDE definition.
- Phase-space Density: scaled with sample size.

Toy MC Study – PDF vs. Density

- ▶ 6 mm beam passing through a LiH absorber only (no solenoids).
- Same transmission loss as the simulation study.
- Evolution of 9th percentile contour (fixed muon count inside the contour).
- ▶ Phase-space PDF: slide 2's original KDE definition.
- Phase-space Density: scaled with sample size.

Alternative Simulated KDE Study

- The "routine" KDE routine:
- \star Let all muons contribute to density.
- ★ Take a magnifying glass and only track densities of the 9th percentile contour.
- KDE routine on this slide:
- ★ Record coordinates of core muons (9^{th} percentile).
- ★ Re-run KDE on this subsample.
- ★ Same 6-140 beam setting.

T. A. Mohayai, et al., "Novel Implementation Of Non-Parametric Density Estimation in MICE", IPAC'17, IPAC-2017-WEPAB135 (2017).

06.28.17

Modified KDE Analysis with Data

- **Run 8681:**
 - ▶ 3-140 beam setting with LiH absorber and no currents in M1D & M2D coils.
 - Vertical lines: tracker stations. Horizontal lines: locations of the tracker reference planes.
 - Cuts: 28 < TOF01 < 30.5 ns, $135 < p_{\text{upstream}} < 145 \text{ MeV/c}$, $p_{\text{value}} > 0.02$.

Modified KDE Analysis with Data

- Run 8699:
 - ▶ 6-140 beam setting with LiH absorber and no currents in M1D & M2D coils.
 - Vertical lines: tracker stations. Horizontal lines: locations of the tracker reference planes.
 - Cuts: 28 < TOF01 < 30.5 ns, $125 < p_{\text{upstream}} < 162 \text{ MeV/c}$, $p_{\text{value}} > 0.02$.

Modified KDE Analysis with Data

- **Run 8685:**
 - ▶ 10-140 beam setting with LiH absorber and no currents in M1D & M2D coils.
 - Vertical lines: tracker stations. Horizontal lines: locations of the tracker reference planes.
 - Cuts: 28 < TOF01 < 30.5 ns, $125 < p_{\text{upstream}} < 162 \text{ MeV/c}$, $p_{\text{value}} > 0.02$.

Density Versus Amplitude

★ Amplitude: 4th root of volume or the mean radius of the hyper-ellipsoid.

★ Increase in core density while decrease in density in the periphery.

KDE Application to MICE Data & Simulation

- Run 8681, Data versus Simulation:
 - ▶ 3-140, emittance-momentum setting, LiH absorber, downstream Match coils off.
 - Dashed red lines: tracker stations.
 - ▶ $28 < \text{TOF01} < 30.5 \text{ ns}, 125 < p_{\text{upstream}} < 162 \text{ MeV/}c$, fixed contour evolution.

KDE Application to MICE Data & Simulation

- Run 8681, Data versus Simulation:
 - ▶ 3-140, emittance-momentum setting, LiH absorber, downstream Match coils off.
 - Dashed red lines: tracker stations.
 - > 28 < TOF01 < 30.5 ns, $125 < p_{upstream} < 162 \text{ MeV}/c$, fixed contour evolution.

Tanaz A. Mohayai

Conclusion and Future Prospects

- Phase-space PDF (normalized phase-space density) is more sensitive to beam loss than phase-space density (scaled phase-space density).
- The errors (MISE, systematics, etc) get too large in 4D. Further investigation into the error analysis in progress.
- Further extension of the toy MC studies under way.
- Kernel-based NNDE currently being applied to data. To be extended to a hybrid of the KDE and the NNDE methods.
- Stay tuned!

Additional Slides

KDE Error Analysis in 1D – sample size study, True vs. KDE

16

14

12

10

- Generated 10 Gaussian distributions ($\sigma = 0.03$ * a.u), each with 1k, 10k, and 100k data points.
- Compared their KDE and true densities. ☆
- The bandwidth is optimal (minimized MISE). ☆

KDE Density

True Density

1k

KDE Error Analysis in 1D cont. – sample size study, True vs. KDE

KDE Error Analysis in 1D cont. – sample size study, True vs. KDE

2.0

1.5

1.0

- Generated 10 toy Gaussian distributions ($\sigma = 0.03$ * a.u), each with 1k, 10k, and 100k data points.
- Compared their **KDE errors** (differences between * KDE density and true densities).

KDE Error Analysis in 1D cont. – sample size study, True vs. KDE

0.4

0.3

0.2

0.1

- Generated 10 toy Gaussian distributions ($\sigma = 0.03$ \mathbf{x} a.u), each with 1k, 10k, and 100k data points.
- Compared their KDE error averages. *
- The bandwidth is optimal (minimized MISE). ☆

- To summarize, isolated each curve's peak density (density curve enclosing 9% of the sample size):
- * KDE density stabilizes and approaches the true density curve as sample size grows.
- * Slight increase in mean density with growing sample size (caused by the optimal bandwidth's dependence on sample size).

