Field Off Scattering Studies: Current Status

John Nugent

University of Glasgow

john.nugent@glasgow.ac.uk

27/6/2017

Since CM47

- Ryan Bayes has left Glasgow to move to a new position
- I have moved into a new position at Glasgow
- Now working on developing the field off scattering studies Ryan is keeping in touch and providing direction
- Picked up all of the MCS analysis code and validated that it is producing values compatible with those presented by Ryan at CM46

Scattering Data

- Field off data sets were collected in ISIS run periods 2015/03 and 2015/04
- A momentum dependent multiple scattering measurement is made
 - Measure empty channel scattering
 - Convolved with physics model of scattering in absorber prediction.
 - Measure absorber scattering
 - Prediction is response in Bayesian deconvolution of absorber scattering distribution.
 - χ² comparison between data and prediction
 - Width of scattering distribution: Θ

John Nugent (UGlas)

Selection

Only minor changes to selection

- Require a US track. If a DS track not extant, statistics are set to overflow values.
- Analysis done in 200 ps bins, as shown in TOF plot
- Require projection of US tracks to appear, when 12 mrad radial angle is added, within central 140 mm radius of DS plane 1 projected

Scattering Data

• Define projection angles

$$heta_y = \operatorname{atan}\left(rac{p_{DS} \cdot (\hat{y} imes p_{US})}{|\hat{y} imes p_{US}||p_{DS}|}
ight)$$
 (1)

and

$$\theta_{x} = \operatorname{atan}\left(\frac{p_{DS} \cdot (p_{US} \times (\hat{y} \times p_{US}))}{|p_{US} \times (\hat{y} \times p_{US})||p_{DS}|}\right)$$
(2)

• Where
$$\theta_x^2 + \theta_y^2 \approx \theta_{scatt}^2$$
 with

$$\cos \theta_{scatt} = \frac{p_{US} \cdot p_{DS}}{|p_{US}||p_{DS}|}$$

(3)

Physics Model

Three different physics models are used to make the scattering prediction, GEANT4, Carlisle-Cobb & Moliere

Deconvolution of Raw Scattering Data

 Use a iterative algorithm that uses the conditional probability to characterize the response of the reconstructed scattering angle to the true scattering angle

Bayes Theorem

$$P(C_i|E_j) = \frac{P(E_j|C_i)P_0(C_i)}{\sum_{l=1}^{n_c} P(E_j|C_l)P_0(C_l)}$$

- We want $C_i = \Delta \theta_Y^{abs}$ the deflection angle in the absorber material.
- We measure $E_j = \Delta \theta_Y^{tracker}$ the deflection angle measured at the first tracker plane.

Θ as a Function of Momentum

Momentum Correction

A correction must be applied to the P as reconstructed by the TOF to account for the additional path length and energy loss in the channel

- Previous corrections, MC used to correct on a statistical basis and formula on a particle by particle basis.
- MC correction shown at CM47, particle by particle correction is a work in progress. The first iteration had some anomolous behaviour
- New formula uses TOF01 information
- Caveat is constant energy loss is assumed in derivation

Neon Scattering

- In the last week of 2017/01 ISIS user cycle MICE took Neon scattering data and empty channel data
- $\bullet\,$ elog \rightarrow several alarms but mostly seems to be proceeding quietly
- \bullet Physics devil not running \rightarrow have emailed Chris Rogers
- All data in quick turn around processing with MAUS v2.8.5
- Have some first pass plots

Data Summary

All data that was requested has been taken

Beam line settings (P of beam between TOF1-2 in MeV/c)								
140	240	170	200	240	170	200	140	
Zero Absorber				Neon				
9387 9400	9382 9383	9378 9390	9379 9380	9338 9339	9234 9325	9326 9327	9361 9362	
9401 9402	9384 9385	9391 9394	9381 9392	9340 9341	9328 9329	9330 9332	9363 9364	
9403 9404	9386 9388	9395 9396	9393 9411	9345 9348	9331 9333	9334 9337	9373 9374	
9405 9406	9389	9397 93400	9398 9399	9352	9335 9342	9351 9344	9375 9377	
9407 9408						9348		
9409 9410								

Beam line settings	Absorber	No. of triggers	
(P of beam between TOF1-2 in MeV/c)			
240	Neon (300 mm)	$\sim 1 imes 10^{6}$	
	Empty channel	$\sim 1 imes 10^{6}$	
200	Neon (300 mm)	$\sim 1 imes 10^{6}$	
	Empty channel	$\sim 1 imes 10^6$	
170	Neon (300 mm)	$\sim 1 imes 10^{6}$	
	Empty channel	$\sim 1 imes 10^6$	
140	Neon (300 mm)	$\sim 1 imes 10^{6}$	
	Empty channel	$\sim 1 imes 10^6$	

Raw Scattering Distributions

- All onrec plots shown by Durga at daily run meetings have been nominal
- 170 MeV/c neon raw (not deconvolved plots)
- Have work to do to deconvolve including generating MC models + tuning selection \rightarrow Moliere distributions have been provided by J. Cobb (\checkmark)

Field On Analysis

- Field on scattering measurement is being made by Jan Greis (Warwick) and Alan Young (Strathclyde)
- Jan convolving empty channel data with physics models to test against LiH scattering data. Tracks are propagated to the absorber and the scattering evaluated. Currently a study of the systematics is being done
- Alan building on the code developed for the field off analysis & working towards propagating tracks with Runga-Kutta and evaluating scattering in absorbers

Job List

•	Validate code	(\checkmark)
•	Update Note (new round of plots)	(√)
•	Moliere model comparison	(√)
•	Implement P correction	1 week
•	Reprocess data with MAUS v2.9.0	(parallel) 1 week
•	Build MC with MAUS v2.9.0	(parallel) 2 weeks
•	Include tracker efficiency in analysis	2 weeks

• Incorporate Neon scattering in Xenon and LiH analysis 2 week

Selection

		μ Beams, LiH abs.		π Beam	
Selection	Description	172	200	240	240
TOF1 trigger	OF1 trigger At least two raw TOF slab hits exist and at		1.	1.	1.
	least one in each TOF plane.				
Upstream track selection	There is one US track and at most one	66.8%	68.4%	74.1%	59.0%
	track in the DS tracker (If is are no DS				
	track $\theta_X = \theta_Y = 45^\circ$).				
TOF timing selection	Select muons from run at the target mo-	3.8%	5.4%	7.5%	35.0%
	mentum.				
Fiducial selection	For projected US tracks $\sqrt{x^2 + y^2} < r_0$	0.3%	0.5%	0.8%	2%
	at DS ref plane, where $x = x_0 + (\frac{dx}{dz} +$				
	$a_0\cos\phi)\Delta z, y = y_0 + (\frac{dy}{dz} + a_0\sin\phi)\Delta z,$				
	and $\phi = \tan^{-1} \frac{dy/dz}{dx/dz}$. $r_0 = 150$ mm and				
	$a_0 = 0.012$ assumed.				

¹Taken from MCSNote

John Nugent (UGlas)

1

Momentum Correction

Taken from John Cobb's Note analysis Note (28/04/17)

• Pg 1 first order term of Taylor expansion

$$rac{dt}{dp}=-(s_1-s_2)rac{m^2}{p^2 E}\Delta$$

• Pg 2 expression for corrected p

$$p_c = p_0 + \left(rac{dt}{dp}
ight)^{-1} \delta t$$

• expression given on Pg 2 in subsequent line of derivation

$$p_{c} = p_{0} - \frac{1}{\frac{1}{s_{1} + s_{2}}} \frac{Ep^{2}}{m^{2}} \delta t$$

(5)

(6)

(7)