A preliminary 60° lattice for Z

April 3, 2017

K. Oide @ FCC-ee MDI Meeting

Dependence on v_z : Lifetrac vs. BBSS

 $v_x = 0.55, \beta_x = 20 \text{ cm}, \sigma_z = 0.5 \text{ cm}, N_p = 3.10^{10}$

Good agreement between two independent simulations!

D. Shatilov

A stability criterion (K. Ohmi)

Coasting beam model

• Stability condition

$$\begin{split} U &\equiv \frac{\sqrt{3}\beta_x^* c |Z_{peak}|}{8\pi n \eta \sigma_\delta \sigma_z} = 2.4 > 1 & \text{ where } n = \omega_c / \omega_0. \\ \eta &= 6.9 \times 10^{-6} \\ \text{Unstable} \end{split}$$

 Coasting beam model is questionable to use in localized beam-beam interaction and discrete synchrotron motion.

E = 45. 6 GeV, single cell parameters

Δv (deg)	90	60	45	
α (10 ⁻⁵)	0.85	1.76	3.04	
ε _x (nm)	0.085	0.257	0.592	

Simulation Results (preliminary)

 $\beta_x = 20 \text{ cm}$

1) $\Delta v = 60^{\circ}, \alpha = 1.76 \cdot 10^{-5}, \epsilon_x = 260 \text{ pm}, \epsilon_v = 1 \text{ pm}$

URF = 100 MV, σ_z = 3.8 mm, v_s = 0.01388, v_x = 0.55, v_y = 0.59 N_p = 3·10¹⁰, L = 1.20 ·10³⁶, with beamstrahlung: σ_z => 5.0 mm, L = 0.93 ·10³⁶

2) $\Delta v = 45^{\circ}$, $\alpha = 3.04 \cdot 10^{-5}$, $\varepsilon_x = 600 \text{ pm}$, $\varepsilon_v = 2 \text{ pm}$

URF = 200 MV, σ_z = 3.5 mm, v_s = 0.02647, v_x = 0.56, v_y = 0.60 N_p = 4·10¹⁰, L = 1.03 ·10³⁶, with beamstrahlung: σ_z => 4.7 mm, L = 0.84 ·10³⁶

$\beta_x = 15 \text{ cm}$

1) $\Delta v = 60^{\circ}, \alpha = 1.76 \cdot 10^{-5}, \epsilon_x = 260 \text{ pm}, \epsilon_v = 1 \text{ pm}$

URF = 100 MV, σ_z = 3.8 mm, v_s = 0.01388, v_x = 0.575, v_y = 0.61 N_p = 4·10¹⁰, L = 1.58 ·10³⁶, with beamstrahlung: σ_z => 5.9 mm, L = 1.04 ·10³⁶

D. Shatilov

60° Arc Cell

Additional sextupoles

Δv (deg)	# of sexts	additional sexts	unused sexts
90	~1200	0	0
60	~860	~510	~770
45	~600	~300	~900

"Unused" sextupoles still can be used for correctors.

Optics around the IP

* Divide QC1 into three independent pieces. (suggested by D. Shatilov)

	L (m)	B' @ tt (T/m)	B' @ Z (T/m)		L (m)	B' @ tt (T/m)	B' @ Z (T/m)
QC1L1	1.2	-92.9	-95.8	QC1R1	1.2	-99.9	-96.2
QC1L2	1	-99.5	+47.2	QC1R2	1	-99.9	+48.5
QC1L3	1	-98.6	+14.3	QC1R3	1	-99.9	+14.4
QC2L1	1.25	+62.9	+6.6	QC2R1	1.25	+77.6	+7.4
QC2L2	1.25	+62.9	+2.2	QC2R2	1.25	+77.6	+7.3

- * Only quadrupole strengths are changed to rematch.
- * Solenoids are temporarily removed.

Parameters at Z with the entire ring

Dhaca a druan co	(00	90°			
rnase advance		low lumi	high lumi		
Beam energy [GeV]		45.6			
$\beta_{x/y}$ [cm/mm]	15 / 1	100 / 2	50 / 1		
ε _x [nm]	0.255	0.083	0.2		
α _p [10-5]	1.465	0.717			
σε0 [%]	0.037				
$\sigma_{z0} [\mathrm{mm}]$	3.6	2.4			
V _c [MV]	88.8	96.0			
V _{X,Y}	265.14 / 267.22	387.08 / 387.18			
$ u_Z$	-0.0234	-0.0172			
Beam current [A]	1.45				
# of bunches	73770	91500	30180		
particles / bunch	4.0	3.2	9.8		
Luminosity / IP [10 ³⁴ cm ⁻² s ⁻¹]	1.04	0.90	2.07		

Check for the beam-beam stability (K. Ohmi)

* Above is without beamstrahlung, which relaxes the strong-strong instability.

Dynamic Aperture

 $\beta_{x,y}^{*} = (15 \text{ cm}, 1 \text{ mm}) @ Z$

* The momentum acceptance with $\beta_{x,y}^* = (15 \text{ cm}, 1 \text{ mm}) @ Z$ has shrunk to $\pm 1.1\%$, which is still allowable for beamstrahlung:

$$\sigma_{\varepsilon,\rm BS} = \sigma_{\varepsilon 0} \times \frac{\sigma_{z,\rm BS}}{\sigma_{z0}} = 0.037\% \times \frac{5.9 \text{ mm}}{3.8 \text{ mm}} = 0.057\%$$

$$\pm 1.1\% = \pm 19 \ \sigma_{\varepsilon,BS}$$

Summary

- * A preliminary design of a lattice with 60° arc and $\beta_{x,y}^* = (15 \text{ cm}, 1 \text{ mm})$ to mitigate the strong-strong instability at Z has been presented.
- The lattice is compatible with 90° optics at higher energies, with additional ~500 sextupoles in the arc.
- Although the momentum acceptance with the 60° arc becomes ±1.1%, which is still sufficient for the beamstrahlung at Z.
- * Now a synchrotron injection at Z becomes more difficult.
- Further optimization will be done by taking into account the way of division of QC1, common quads in the arc, new FCC-hh layout, etc.