Background Studies in the FCC-ee MDI First steps with MDISim
 Synchrotron Radiation from Bending Magnets

Marian Lückhof

Universität Hamburg

FCC-ee MDI Meeting April 3, 2017

Goals of this study I-Software

- Understanding the programs
- Working on personal setup

Combined programs in toolset MDISim :

1. Machine Lattice Description, generate twiss, survey files: Mad-X
2. Visualization. Visualize geometry and analytic estimates like SR: Root
3. Detailed particle tracking. Simulate passage of particles through Matter: Geant4

Goals of this study II - FCC-ee MDI

- IR, especially transition beam pipe detector
- Focus on background processes (tbc):
- Synchrotron radiation
- Beam-gas
- Beam-Beam
- Using Geant4 to:
- do detailed simulation of last 20 m
- include basic detector models
- Possibly extend/improve MDISim

MDISim and Output

First results with details on magnets and SR [Boscolo et al., 2017]

Figure: Upstream view of b1. Last couple of magnets with estimated SR cones. Note: optics version 85

- E_{c}
- n_{γ}
- $S R$ power P_{S}
- Location (distance)
- Bending radius
- Field

Details on Lattice Elements

Example I: SR cones on last 600 m
This stage already allows basic understanding of the layout

Figure: SR fans of BC3L.2, BC2L. 2 and BC1L. 2 upstream of b2.

- SR fans and affected areas
- Estimating E_{c} and P_{S}

Details on Lattice Elements

Example II: top view on last 270 m

Figure: Magnets BC1L. 2 and BWL. 2 upstream of b2.

- E_{c} about 100 keV or slightly below
- Narrow and straightforward cones
- Protection of IP challenging?

First Outlook on Next Step

Things to be investigated in more detail
(
Figure: Possible collimator positions upstream of b2.

Collimator locations?

- Far off vs. closer to the IP
- Material and geometry
- Interaction with the beam/beam dimensions

Program chain

- Further setting up toolchain
- Combine Root with Geant4
- Detailed particle tracking (SR γ)

References

CERN

Boscolo, M., Burkhardt, H., and Sullivan, M. (2017).
Machine detector interface studies: Layout and synchrotron radiation estimate in the future circular collider interaction region.
Physical Review Accelerators and Beams, 20(1).

