MDI meeting, CERN 03/04/17

G4 implementation of new IR design & first results on pair background

E. Perez, Y. Voutsinas

Outline

Report on geant4 implementation of new IR design

First results on pair background full simulations

The new interaction region design

As was decided in MDI workshop of January

Image from M. Sullivan

Implementation in geant4

CLIC detector model, with the new IR design & 2T field: FCCee_o4_v01

• Overview of the interaction region

Overview of the detector

Beam pipe and LumiCal

Central beam pipe

- R_{inn} 15mm 12.5cm > Z > -12.5cm
- 1.2mm of Be (cooling incl.) + 5µm of Au coating

Z < 90 cm

• 0.015rad angle, 1mm of Be + Au

Z > 90 cm

Instrumentation

Sensitive -

• 1mm of Cu, no gold coating, R=15mm

Conical shaped Lumical

- 40 layers 40 radiation lengths
- + silicon made instrumentation

Vertex detector

Innermost layer moved from radius 22 mm to 17.5 mm to profit from smaller beam pipe

Spiraling endcaps replaced by simpler disk like endcaps

Optimisation concerning material budget is on going (our CLIC colleagues)

Open issues

HOM absorbers

- Expected to contribute to the hits coming from backscattered particles
- Work on going
- Not included in the simulations yet
- Tantalum shield
- Not yet implemented
- Some more info needed

Beam pipe radius at split vacuum chamber

- At z~1m, the 2 beam pipes not separated enough to accommodate 15mm radius & 1mm thickness
- Hence, we have kept for the while what we had before, radius of the separated BP to 12mm

Pair background simulations

Pair background simulations, top energy

50 BXs of pair bkg generated with guinea pig

Full simulation with g4 model using ILCSoft

Comparison between FCCee_o3_v03 (previous) and FCCee_o4_v01 (new) detector models (hits / BX)

Understanding the differences

Tantalum shield can increase hits by a factor > 2

Beam pipe material also plays important role

Origin of the bkg hits

Hit densities

Crude approximation of occupancy in VXD L1: ~0.7x10⁻³%

• Assuming pixel pitch 20µm, 5 pixels / cluster, 700µm range cut

In ITE D1, for small radius can reach

- ~0.35 % case of strips
- ~10⁻³ % case of pixels