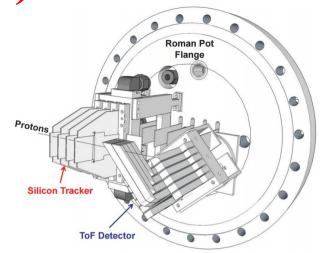
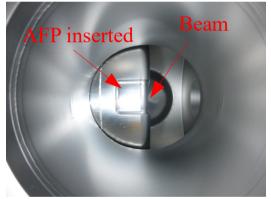
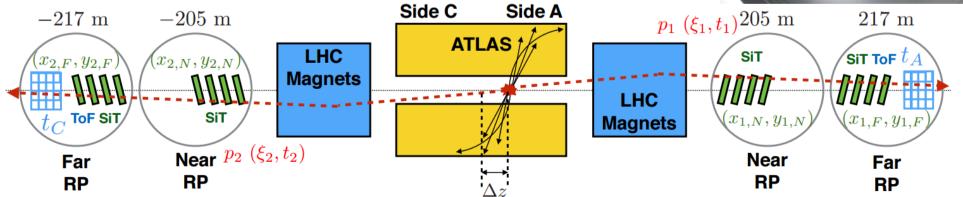
3D Silicon Tracker for AFP: From Qualification to Operation

Fabian Förster
On behalf of the ATLAS Forward Proton Detector (AFP) Collaboration

VERTEX 2017 - 11th September 2017 Las Caldas, Asturias, Spain

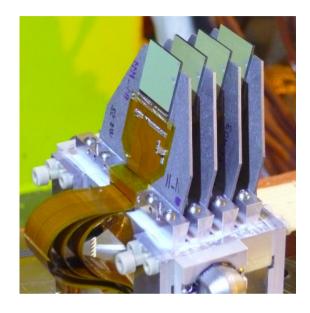

- 1) Introduction
- 2) Qualification
- 3) Installation
- 4) Running


- 1) Introduction
- 2) Qualification
- 3) Installation
- 4) Running


ATLAS Forward Proton (AFP)

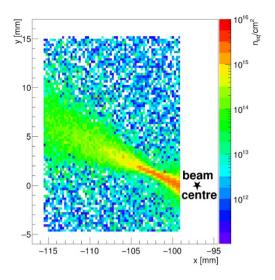
AFP TDR: CERN-LHCC-2015-009

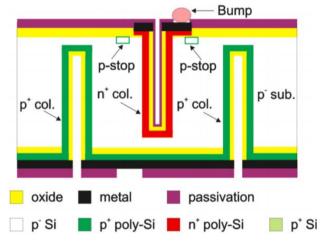
- AFP measures protons emerging intact from ATLAS inelastic collisions
 - → forward tagging
 - → gamma-gamma interactions, ...
- Detectors in AFP:
 - Silicon Tracker: to determine particle momentum
 - Time-Of-Flight: Quartz bars to reduce pileup
- Detectors are placed in Roman Pots to approach beam up to 2 mm



Brief History of AFP

- ATLAS and CMS collaborated in the FP420 project, which was not realized, but served as cornerstone for AFP
 - originally envisioned to install forward detectors at 420m from IP, but proved too difficult
 - \rightarrow more feasible at 200m!
- AFP collaboration proposed detector to ATLAS (2009)
- AFP approved by LHCC (June 2015) following intensive qualification progress
- First AFP arm installation (YETS 2015-2016)
 - Only tracker installed
 - Intended for commissioning and low luminosity data tacking
- Second AFP arm installation (EYETS 2016-2017)
 - Full AFP detector operational, capable of data taking at nominal luminosity

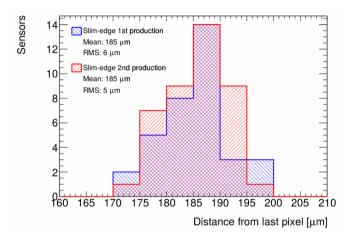


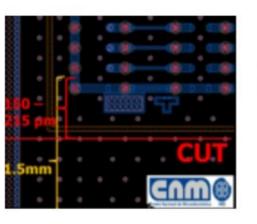

3D Silicon Detectors

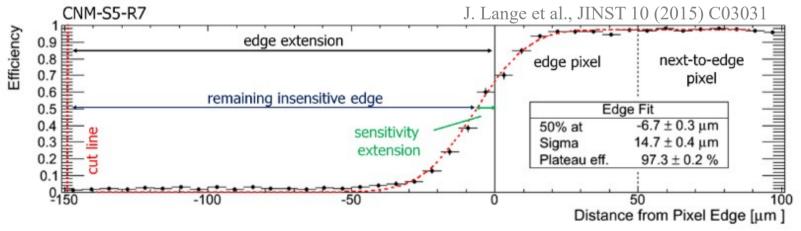
• Requirements:

- slim edge to approach beam as close as possible
- withstand non-uniform radiation (up to 3E15 n_{eq} /cm² in 3 years)
- 10 (30) μm resolution in short (long) pixel direction to determine p_T

 M. Kocian talk, today 9:00
- → will show IBL 3D fulfills these!
- Column-like electrodes: (50x250 µm² pixel size, 336x80 pixels)
 - Decoupled electrode distance (~ 67 μm) from detector thickness (230 μm)
 - → Lower depletion voltage and radiation hardness
- FE-I4 readout chip
 - Tunable threshold, charge measurement (via ToT)
 - Provides trigger signal

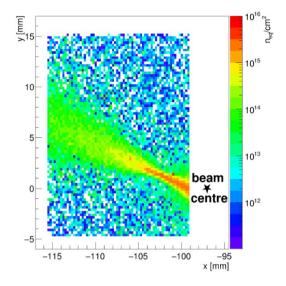


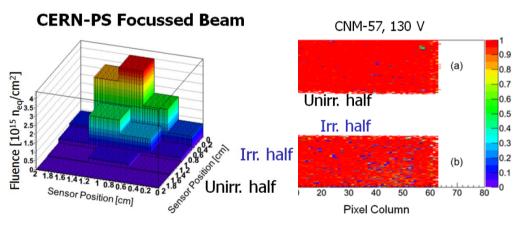



- 1) Introduction
- 2) Qualification
- 3) Installation
- 4) Running

Qualification: Slim Edge

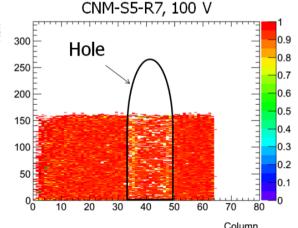
- Requirement: Slim edge to approach proton beam as much as possible
 - $\rightarrow \sim 200 \ \mu m$ insensitive edge can be done in tight schedule of AFP
- CNM (3D guard ring design): Fully sensitive up to last pixel
 - → Fulfills slim edge requirement!




Qualification: Non-uniform irradiation

- Expect highly non-uniform fluence from diffractive protons:
 - $3x10^{15}$ n_{eq} /cm² in a small area over 3 years
 - Orders of magnitude lower nearby
- 2 irradiation campaigns with different **non-uniform** irradiations:

Focused 23 GeV p irradiation (CERN-PS)


 \rightarrow Large fluence spread (max $4x10^{15} n_{eq}/cm^2$)

23 MeV p through hole in 5 mm Al plate (KIT)

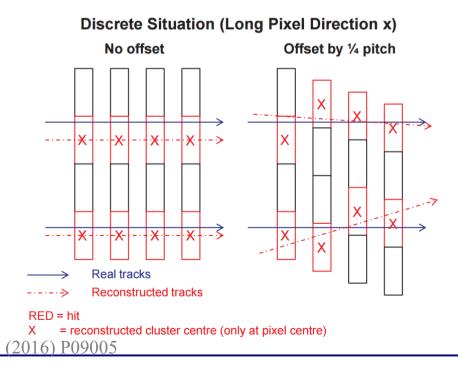
 \rightarrow Localized fluence (max 3.6x10¹⁵ n_{eq}/cm²) with abrupt transition

9

S. Grinstein et al., NIM A730 (2013) 28 J. Lange et al., JINST 10 (2015) C03031

Efficiency 96-99% in all regions

→ Requirements in radiation hardness for AFP fulfilled!

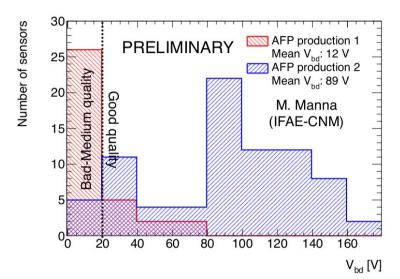

Qualification: Position Resolution

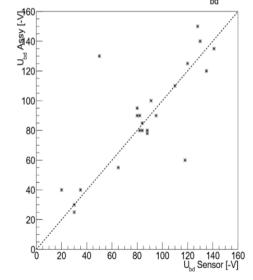
- Short pixel direction
- **Requirement:** 10 µm resolution
- 50 μ m pixel size \rightarrow 14 μ m digital resolution
- **But:** detectors placed at 14° angle to maximize 2-hit events → Use 4 bit ToT of FEI4 for cluster determination
- Testbeam result: 6 μm resolution per plane

 → 3 μm per station
- 10V, 2ke, 10@20ke, DUT plane 2 Events [norm:] 0.06 0.05 All cluster size Histogram Track - DUT $RMS_{track-DUT} = 13.2 \mu m$ **Linear Scale** $\rightarrow \sigma_{SPDIIT} = 5.7 \mu m$ $\rightarrow \sigma_{\text{track}} = 2.8 \, \mu \text{m}$ Cluster size ≤ 2 Histogram 0.04 $RMS_{track-DUT} = 7.1 \mu m$ _{track-DUT} = 6.2 μm 0.03 \rightarrow σ_{SP,DUT} = 5.6 μm $\rightarrow \sigma_{\text{track}} = 2.8 \ \mu\text{m}$ 0.02 0.01 -20 0 40 -40 res_{track-DUT} [μm]

- Long pixel direction
- Requirement: 30 µm resolution
 - 250 μ m pixel size \rightarrow 72 μ m digital resolution
- Staggered planes by 60 μm each

 → Improve resolution to up to 19 μm per station

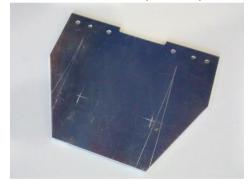



Sensor Productions

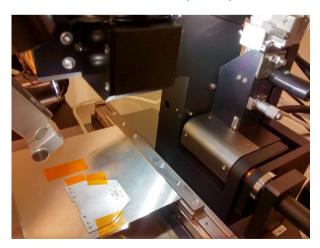
- **First CNM production** (January 2015):
 - For the one-arm AFP (2016)
 - → YETS 2015-2016 installation
 - Production had poor yield
 - \rightarrow Only 9 Sensors with $V_{bd} > 20V$
 - Before irradiation at 14° 3D sensors are >99% efficient already at 1V
 - → Sufficient for first installation (YETS 2015-2016)
- Second CNM production (April 2016):
 - For full AFP detector (2017)
 - → EYETS 2016-2017 installation
 - Optimization of column-etching at CNM improved yield
 - \rightarrow 75 Sensors with $V_{bd} > 20V$

Production	Wafer Yield	Good Wafers	Sensor Yield	Good Sensors
First	38 %	5	23 %	9
Second	83 %	10	94 %	75

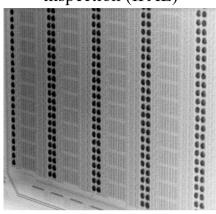
AFP_B2: Sensor/Assembly U



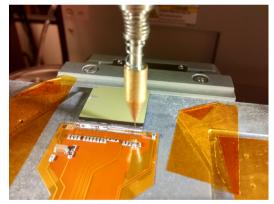
Module Production


- Bare Assembly: Flip-chipped sensor on FE-I4
 - good sensor selected based on IV-behavior on Wafer-level
 - Bump-bonding followed by X-ray inspection before module assembly
- Tracker Module: Bare Assembly + Carrier card + Flex
 - Bare Assembly is glued onto the carrier card with alignment mark
 - Flex is glued as well on carrier card
 - Chip is wire-bonded to Flex

Carrier card (SUNY)



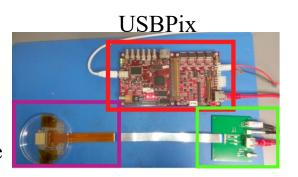
Assembly with Pick and Place machine (IFAE)

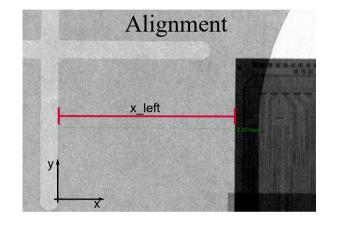


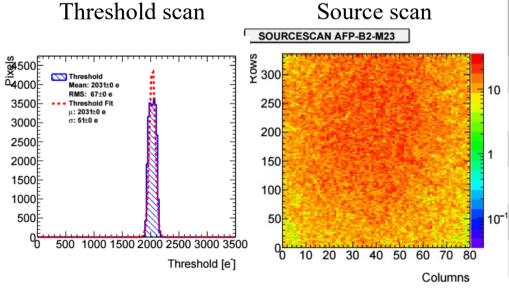
S. Grinstein et al., JINST 12 (2017) C01086

Bump-bonding and X-ray inspection (IFAE)

Wire bond and pull test (IFAE)



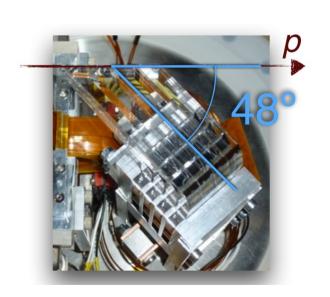

Quality Assurance

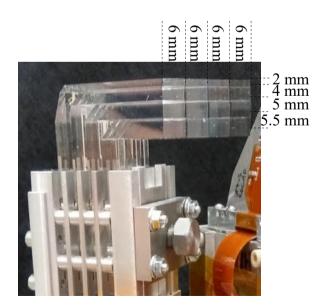

• **Electrical characterization** (IFAE and CERN):

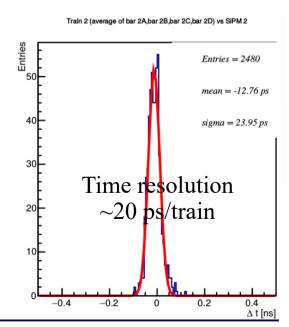
AFP-Module

- Tuning
- Source scan (bump bonds)
- IV behavior
- Alignment measurement with X-ray machine
- Temperature cycling ('Burn-In Test'):
 - powered FEI4
 - from -20°C to 40°C, 1 hour at each peak for a total of 24 hrs

Production Step	Production	Total	Good	Yield
BB	1	22	21	95%
	2	31	30	97%
Assembly	1	17	17	100%
	2	29	29	100%
QA	1	17	14	82%
	2	27	26	96%

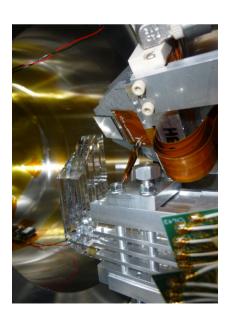


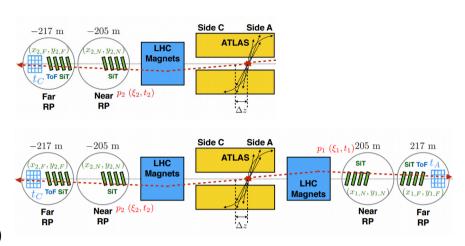

Time-of-Flight detectors


Cherenkov Quartz bars

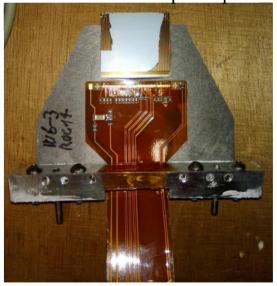
- Placed at Cherenkov angle (48°) with respect to proton direction to synchronize photon detection
- Photons are collected in a Micro-Channel-Plate Photomultiplier (MCP-PMT) at the end of the bars
- **ToF requirement:** Time resolution 10 30 ps
- Performance evaluated in various test-beams:
- Full train (4 bars) time resolution: ~20 ps
 - → ~4 mm z-resolution of the primary vertex in the central detector L. Nozka et al., Opt Express 2016 Nov 28;

L. Nozka et al., Opt Express 2016 Nov 28, 24(24): 27951-27960

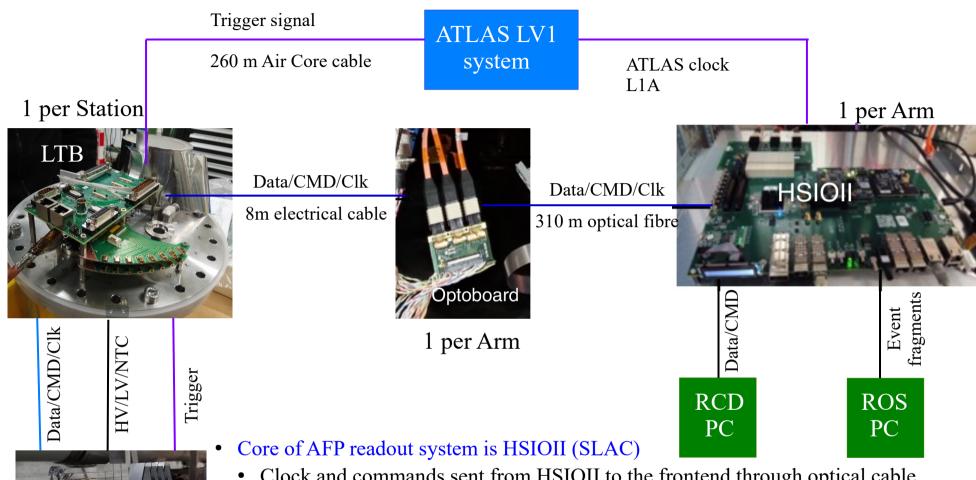



- 1) Introduction
- 2) Qualification
- 3) Installation
- 4) Running

AFP Installations


- One-Arm installation (YETS 2015-2016):
 - One day for installation (26.02.16)
 - On one side with only tracker:
 - proof of principle and commissioning
 - Physics data at low pile-up
- Two-Arm installation (EYETS 2016-2017):
 - Several weeks for installation (13.03 04.04.17)
 - Both sides with tracker and ToF:
 - Physics data at low and high pile-up!

Crushed tracker after miscalculation of pot-depth



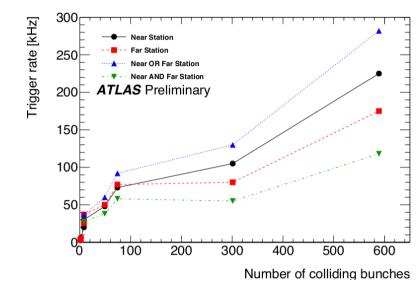
Read-out and trigger chain

- Clock and commands sent from HSIOII to the frontend through optical cable
- Commands are sent from RCD to HSIOII, ROS receives the events from HSIOII
- Trigger from Tracker sent to HitBus chip (DBM) which performs station-wise trigger logic
 - 3 planes per station participate in trigger: Majority vote
 - Each station sends a trigger signal to the ATLAS LV1 system
- FAR stations also have ToF trigger, which is required for pile-up
 - However: currently small trigger efficiency

Tracker / Time

of Flight (only

- 1) Introduction
- 2) Qualification
- 3) Installation
- 4) Running


2016 Operation

- Standard pile-up: AFP was inserted in beam position during intensity rampup in each intensity step up to 600 colliding bunches
- Study detector performance and alignment
- Understand beam background and AFP trigger
- Time-in detector to read-out 1BC and to send triggers inside ATLAS latency


Low pile-up \rightarrow Physics

- Problems with Tracker:
 - 1 module with HV short (operated at 0V, still 97% efficient before irradiation)

Date	Fills with AFP inserted	TDAQ Mode	
19 - 22.04	Alignment and Loss Maps	AFP Only	
29.04 – 05.05	TDAQ integration (LHC power cut)		
23.04 – 14.10	3 – 600 bunches	After 05.05: with ATLAS	
31.07 & 8.10	600 b. low-µ physics run	with ATLAS	

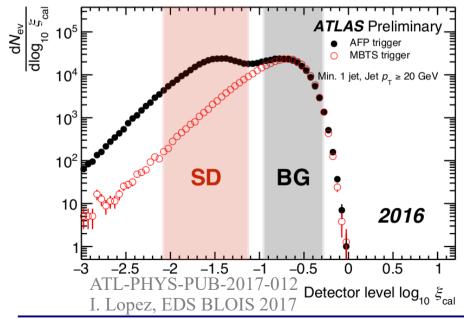
Diffractive

 20σ nom.

 $\beta^* = 0.40 \text{ m}$

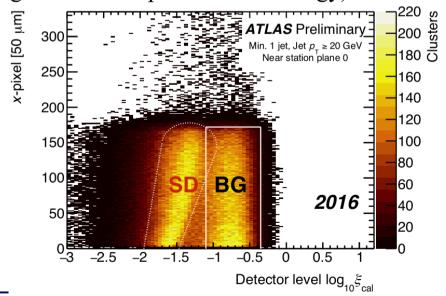
First 2016 results: Proton tagged SD+jets

• Validate AFP proton tagging:


• Tag protons to select single diffractive events with jets in the final state

• Proton kinematic reconstruction of AFP not yet available

 \rightarrow Correlate AFP triggered events to ξ (proton energy lost) measured at the calorimeter


The second state of the second secon

Excess in low ξ indicates presence of proton tagged diffractive events

Low ξ excess correlates with x position measured in AFP (trajectory of diffractive proton in LHC magnetic field depends on it's energy)

Out-going proton: Detected by AFP

2017 Operation

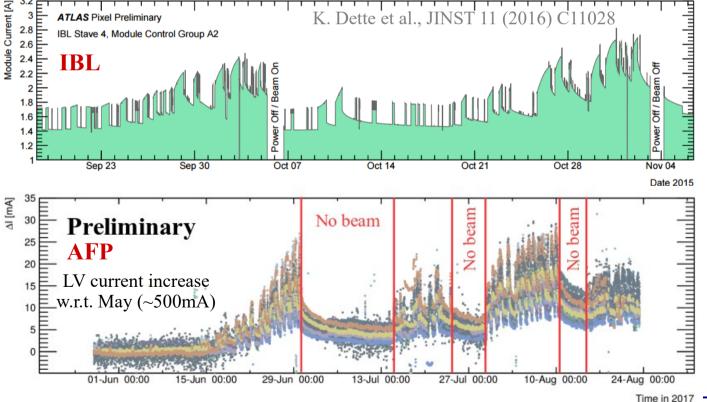
- Standard pile-up: AFP was inserted in beam position during intensity ramp-up in each intensity step up to 2544 bunches
 - Study detector performance and alignment
 - Understand beam background and new ToF-based AFP-trigger
 - Time-in-detector to read-out 1BC and to send triggers inside ATLAS latency
 - ToF detector commissioning
 - → ToF-Tracker correlation visible, but more signal cleaning required

• Low and high (standard) pile-up physics runs:

- AFP is inserted during stable beams all the time for physics
- First low pile-up runs

• Problems with Tracker:

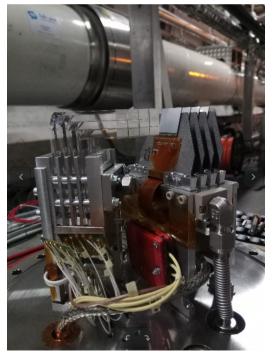
- 1 plane has broken LV wirebond (only shunt circuit visible)
- 2 planes with HV short
- Radiation damage increases FEI4 current drastically and requires retuning (next slide)


ToF-Tracker correlation

[mn dSum-x-bixel-x ddSum-y-x-bixel-x-

Radiation Damage: FEI4

- As seen and studied in IBL: Low dose (<10 Mrad) in NMOS transistors of FEI4 causes defects
 - Increased power consumption of transistors and thus LV current
 - → have to be careful to not burn LV wirebonds
 - → Higher temperature helps annealing and returning to lower current
 - Also changes behavior of transistors and thus tuning
 - → Threshold/ToT of irradiated area gets higher/lower
 - → Frequent retuning required!

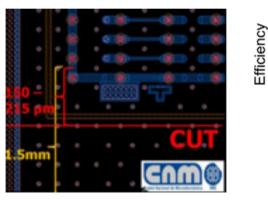


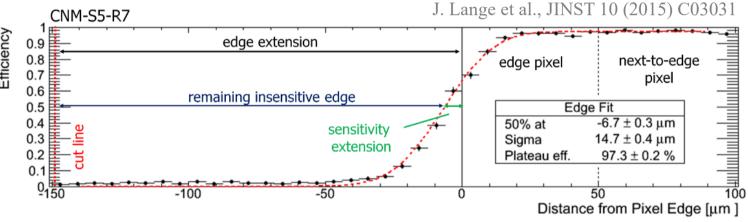
Column

24

Summary

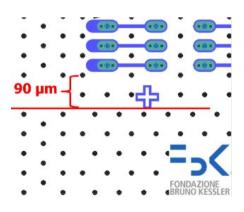
- 3D sensors successfully qualified for AFP
- Established production and QA of tracker modules for AFP
- The AFP detector was installed in two phases in 2016 and 2017:
 - 2016: 2 Roman Pot stations with silicon trackers in one side (z<0) of ATLAS
 - Commissioned and took data for physics and analysis
 - Single proton tag and **low luminosity** (no ToF \rightarrow no pileup removal):
 - → First analysis showing AFP is able to tag diffractive events
 - 2017: 4 Roman Pot stations with silicon trackers and Time-of-Flight detectors (only FAR) on both sides of ATLAS
 - Detector commissioning ongoing
 - Radiation visible in FEI4 current increase
 - Double proton tag and **low to high luminosity** (ToF available for pileup removal)

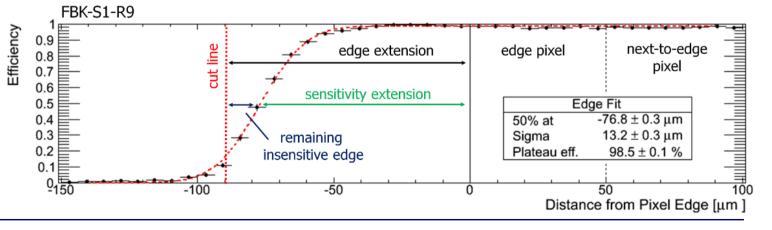



Backup

Qualification: Slim Edge

- Requirement: < 200 μm insensitive edge
- CNM (3D guard ring design): Fully sensitive up to last pixel
- FBK (no guard ring): Sensitive ~75 μm beyond last pixel
 - → Both productions fulfill slim edge requirement!
- At time of production FBK changed production from 4" to 6" wafer → chose CNM




Slim-edge 2nd production
Mean: 185 um

165 170 175 180

185 190 195 200 205 210

Distance from last pixel [µm]

