#### ATLAS ITk Strip Detector for High-Luminosity LHC

#### Jiri Kroll<sup>1</sup>,

#### on behalf of the ATLAS Collaboration

<sup>1</sup>Institute of Physics, The Czech Academy of Sciences

jiri.kroll@cern.ch

VERTEX 2017, September 10 - 15, 2017





1/36

・ロト ・四ト ・ヨト ・ヨト

# ATLAS ITk Strip project - outline of presentation

- Upgrade of ATLAS inner tracker motivation and requirements
- ATLAS Inner Tracker (ITk) Strip detector design and components
- Evaluation of individual detector components and structures
- ATLAS Inner Tracker Strip Detector -Technical Design Report (approved public document, link)







• ATLAS Upgrade is a very complex project planned in 3 phases corresponding to 3 long technical shutdowns of the LHC accelerator

• LS1 (Q2/2013 - Q1/2014 / 2 years) - ATLAS Upgrade Phase 0

- LS2 (Q1/2019 Q4/2020 / 2 years) ATLAS Upgrade Phase 1
- LS3 (Q1/2024 Q2/2026 / 2.5 years) ATLAS Upgrade Phase 2

-

(日) (同) (三) (三)

## ATLAS Upgrade project - Phase II

- Upgrade of LHC accelerator to HL-LHC
  - HL-LHC parameters:  $\mathcal{L}_{peak} \sim 5-7.5 \times 10^{34} \ cm^{-2} s^{-1}$ ,  $\langle \mu \rangle \sim 200$ , 25 ns between bunch crossings,  $\mathcal{L}_{int} \sim 3000(4000) \ fb^{-1}$
- New ATLAS Inner Tracker current ATLAS Inner Detector (ID) will be replaced with new all-silicon Inner Tracker (ITk)
- Trigger new design of Phase II Trigger system with L0 trigger layer (including FELIX readout)





# ATLAS ITk - motivation and requirements





- Radiation damage
  - ID PIX designed for  $\sim 400~{\rm fb^{-1}}$ , ID SCT  $\sim 700~{\rm fb^{-1}}$  and IBL  $\sim 850~{\rm fb^{-1}}$
  - HL-LHC should deliver  $\sim 3000(4000) \text{ fb}^{-1}$
- Bandwidth saturation
  - ID designed to accommodate  $\langle \mu \rangle \sim 50$  corresponding to
    - $\mathcal{L}=2\times 10^{34}~\mathrm{cm}^{-2}\mathrm{s}^{-1}$
- Detector occupancy
  - increased granularity is required for  $\langle\mu\rangle\sim 200$  to keep the ITk detector performance at the same level as for current inner detector
- Track Trigger
  - current L1 HW trigger doesn't contain tracking information

tracking information added to trigger objects provided by calorimeters and muon system would benefit physics performance

# ITk Layout





#### ITk Pixel detector

- 5 barrel layers with central sensors placed tangential to a circle of constant radius and inclined sensors in the forward parts of barrel
- pixel end-cap (EC) system containing individually located rings
- ITk Strip detector
  - 4 barrel layers with all sensors placed tangential to a circle of constant radius
  - 6 EC rings on both forward regions

#### ITk Layout

 designed to satisfy the requirements on tracking performance, material distribution in X<sub>0</sub> and physics studies



# ITk Strips: Sensors

- (+) Tolerance against radiation bulk damage no *p*-bulk type conversion, partial depletion possible, in the range of  $8-10 \times 10^{14} n_{eq}/cm^2$  factor of 2 more charge compared to SCT
- (+) collecting electrons (fast charge carriers)
- (+) single-sided process easier processing, handling and testing, cheaper and much more available
- (-) *n*-side insulation (*p*-spray, *p*-stop) against electron layer in the surface attrated to the positive charges in the Si-SiO<sub>2</sub> interface
- (-) sensor edges at the bias potential



# ITk Strips: Sensors n<sup>+</sup>-in-p FZ

- 2 types of barrel sensors: size  $\sim 97 \times 97 \text{ mm}^2$ , strip pitch 75.5  $\mu$ m, long strip (LS) with 48.20 mm strips, short strip (SS) with 24.10 mm
- $\bullet\,$  6 types of EC sensors: variable shapes of R0 R5 sensors, strip pitch 69 84  $\mu m$



### ITk Strips: Module as the basic detector unit

- Strip silicon sensor of n<sup>+</sup>-in-p FZ type
- low-mass PCB hybrid with ABCStar (ATLAS Binary Chip) and HCCStar (Hybrid Controller Chip) ASICs
- Power-Board including DC-DC LV Power Block controlled witch upFEAST chip, AMAC (Autonomous Monitored and Control Chip) and HV multiplexer with HV filter
- Glues UV curable glues and (silver) epoxy glues
- Aluminium wire-bonds (thickness of

 $25 \ \mu m$ )





## ITk Strips: Local support - Staves and Petals

- Staves (barrel) and Petals (EC) provides mechanical, geometric, thermal and electrical support to modules
  - mechanical and geometric: local supports interface to global support structures through a series of position locators and locking points
  - thermal: titanium cooling tubes connected to CO<sub>2</sub> cooling system working with temperatures between  $+20^{\circ}C$  and  $-40^{\circ}C$
  - electrical: electrical power (LV and HV), TTC (Timing, Trigger and Control) data, DCS (Detector Control System) data and measured data transfer services required by the modules are carried by a copper/kapton bus tape mounted on both sides of structure and operated by EoS (End of Substructure) card



#### ITk Strips: Local support - Staves and Petals

- 28 barrel modules on each stave (14 modules per side), short strips on inner two cylinders, modules on each side of the stave are rotated with respect to the beam line by a ±26 mrad total rotation of 52 mrad
- 18 EC modules on each petal (9 modules per side, rings R0 R5), stereo angle of 20 mrad directly implemented in sensor geometry - total stereo angle of 40 mrad



### ITk Strip: Electronics Architecture

- ITk module: Si Sensor, Hybrid, PowerBoard
  - Hybrid: ABCStar ASIC, hybrid-side bus, HCCStar ASIC
  - PowerBoard: LV DC-DC power block with upFEAST, AMAC, HV Multiplexer
- ITk Stave/Petal: Bus Tape, End-of-Substructure Card
- Barrel/EC global support structure: Patch Panel 1



### ITk Strip: Electronics Architecture



# ITk Strip: Electronics Architecture



**D.EXPERIMEN** 

### ITk Strips: Global Support

- primary role of global support structure is to locate robustly staves and petals into barrel and EC structures, respectively
- accurate in-situ track alignment requires a modest initial accuarcy of 100 μm to guarantee mechanical clearance/overlap between active elements
- stability considerations obtained from actual vibrations measurements in ATLAS cavern impose even more stringent requirements



| System        | Direction | Stability<br>requirement | 1 st mode (A)<br>ASD=10 <sup>-7</sup> g <sup>2</sup> /Hz | 1 <sup>st</sup> mode (B)<br>ASD=10 <sup>-8</sup> g <sup>2</sup> /Hz |
|---------------|-----------|--------------------------|----------------------------------------------------------|---------------------------------------------------------------------|
| Strip barrel  | z         | 20 µm                    | 3.2 Hz                                                   | 6.7 Hz                                                              |
|               | R         | 20 µm                    | 3.2 Hz                                                   | 6.7 Hz                                                              |
|               | φ         | 2 µm                     | 14.4 Hz                                                  | 31.6 Hz                                                             |
| Strip end-cap | z         | 20 µm                    | 3.2 Hz                                                   | 6.7 Hz                                                              |
|               | R         | 20 µm                    | 3.2 Hz                                                   | 6.7 Hz                                                              |
|               | φ         | 2 µm                     | 14.4 Hz                                                  | 31.6 Hz                                                             |

Stability requirements (A - performance, B - design) for vibration modes in the R and  $\phi$  direction - frequencies above which motions will be smaller than the displacement requirements.

## ITk Strips: Global Support for barrel

- 4 barrel layers
  - L0: R = 405 mm, 28 staves, 784 modules
  - L1: R = 562 mm, 40 staves, 1120 modules
  - L2: R = 762 mm, 56 staves, 1568 modules
  - L3: R = 1000 mm, 72 staves, 2016 modules
- flange-interlink mechanical interface, 1 interlink per stave, 5 identical lock points along a stave - every 3 modules - and a unique lock point at z = 0



# ITk Strips: Global Support for EC

• 6 EC disks on each forward side with 32 petals per disk

- D0:  $z_{pos} = 1512$  mm, D1:  $z_{pos} = 1702$  mm, D2:  $z_{pos} = 1952$  mm, D3:  $z_{pos} = 2252$  mm, D4:  $z_{pos} = 2602$  mm, D5:  $z_{pos} = 3000$  mm
- 8 service trays for electronics and cooling, 8 EC PP1 patchpannels, EC rail system, first prototypes of disk structure and stiffening disk



#### ITk Strips: Total numbers

| Barrel            | Radius | # of   | # of    | # of    | # of       | # of     | Area              |
|-------------------|--------|--------|---------|---------|------------|----------|-------------------|
| Layer:            | [mm]   | staves | modules | hybrids | of ABCStar | channels | [m <sup>2</sup> ] |
| LO                | 405    | 28     | 784     | 1568    | 15680      | 4.01M    | 7.49              |
| L1                | 562    | 40     | 1120    | 2240    | 22400      | 5.73M    | 10.7              |
| L2                | 762    | 56     | 1568    | 1568    | 15680      | 4.01M    | 14.98             |
| L3                | 1000   | 72     | 2016    | 2016    | 20160      | 5.16M    | 19.26             |
| Total half barrel |        | 196    | 5488    | 7392    | 73920      | 18.92M   | 52.43             |
| Total barrel      |        | 392    | 10976   | 14784   | 147840     | 37.85M   | 104.86            |
| End-cap           | z-pos. | # of   | # of    | # of    | # of       | # of     | Area              |
| Disk:             | [mm]   | petals | modules | hybrids | of ABCStar | channels | [m <sup>2</sup> ] |
| D0                | 1512   | 32     | 576     | 832     | 6336       | 1.62M    | 5.03              |
| D1                | 1702   | 32     | 576     | 832     | 6336       | 1.62M    | 5.03              |
| D2                | 1952   | 32     | 576     | 832     | 6336       | 1.62M    | 5.03              |
| D3                | 2252   | 32     | 576     | 832     | 6336       | 1.62M    | 5.03              |
| D4                | 2602   | 32     | 576     | 832     | 6336       | 1.62M    | 5.03              |
| D5                | 3000   | 32     | 576     | 832     | 6336       | 1.62M    | 5.03              |
| Total one EC      |        | 192    | 3456    | 4992    | 43008      | 11.01M   | 30.2              |
| Total ECs         |        | 384    | 6912    | 9984    | 86016      | 22.02M   | 60.4              |
| Total             |        | 776    | 17888   | 24768   | 233856     | 59.87M   | 165.25            |



### ITk Strips: sensors evaluation

- Strip sensors are tested against precisely defined specifications
  - visual inspection, sensor bow, I-V, C-V, leakage current stability, inter-strip capacitance, inter-strip resistance, poly-silicon bias resistance, punch-through protection efficiency, etc.



#### ITk Strips: sensors evaluation

- Studies of irradiation effects on sensors are critical
  - data from prototype sensors are used to estimate the expected signal size in production sensors at the end of detector lifetime



#### ITk Strips: ABC130 evaluation

- Increase of digital current with delivered total ionization dose
- All studies have been done with prototype ABC130 and HCC130 ASICs, the production ABCStar and HCCStar ASICs will be investigated immediately after they become available



### ITk Strips: HCC130 evaluation

- Increase of digital current in HCC130 ASIC is significantly lower as it contains less digital functionality - fewer memory blocks
- HCCStar will have added memory higher digital current increase is expected





#### ITk Strips: module evaluation - electrical tests

 Traveling DAQload - prototype module built from 1 ATLAS12 mini-sensor, 1 EC R0H1 hybrid, 1 ABC130 ASIC and 1 HCC130 ASIC mounted on the test frame







≣ ∽ ९ (~ 24 / 36

# ITk Strips: module evaluation - CERN irradiation 2016

• Irradiation of LS3 barrel module in 2016 to  $8.0\times10^{14}~n_{eq}/cm^2$  = 37.1 Mrad =  $0.371\times10^6~Gy$ , which was the highest fluence expected on any part of the







HL-LHC Radiation Background Simulations

# ITk Strips: module evaluation - CERN irradiation 2017

• full-sized R0 sensor + 4 ATLAS12EC minisensors (2 normal dices, 2 slim diced) irradiated in 2017 to the total fluence of  $\sim 1.5\times 10^{15}~n_{eq}/cm^2$ 





- twice a year a testbeam at DESY II testbeam facility
- in 2016 the first ATLAS ITk Strip testbeam at CERN SPS testbeam facility
- Equipment necessary for testbeams
  - EUDET Telescope with 6 cooled Mimosa planes (TLU, cabling, ...), 1 additional pixel layer with FE-I4 readout, scintillators in front of and behind the EUDET Telescope, cooling box + jig + chiller with liquid coolant, nitrogen gas inlet tube for decreasing RH when running cold, XY moving stage with remote control, vacuum for DUT fixing on the dedicated jig, PC with specific version of EUDAQ software, HV/LV power supplies, T/RH monitoring system, DUT :-), PC for DUT operation
- many local and online experts as well as shifters required each testbeam



#### • DUTs tested in years 2015 - 2017

- DAQload10 (DESY May 2015), LS2 (DESY November 2015)
- DAQload13 + LS4 (DESY May 2016), LS3 (CERN July 2016)
- R0 + SS1 (DESY May 2017)

| Module    | Description                                                           | Test Beam   | Comment                                                                                                                                                                          |              |
|-----------|-----------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| DAQload10 | Barrel hybrid with three ABC130s, two<br>wire bonded to mini-sensors. | May-15 DESY |                                                                                                                                                                                  |              |
| DAQload13 | Two ABC130 and two ATLAS12-mini sensors.                              | May-16 DESY | Sensors neutron irradiated<br>(2x10 <sup>15</sup> heq/cm <sup>2</sup> ), ABC130-1<br>non-irradiated, ABC130-2 X-ray<br>irradiated (4 MRad with 0.85 MRad/hr<br>at RAL at -5 °C). |              |
| 551       | Full barrel module with ten ABC130,<br>short strips.                  |             |                                                                                                                                                                                  | S. Inneneene |
| LS2       | Full barrel module with ten ABC130,<br>short and long strips.         | Nov-15 DESY |                                                                                                                                                                                  |              |
| LS3       | Full barrel module with ten ABC130,<br>short and long strips.         | Jul-16 CERN | Irradiated at PS with protons<br>(8.0x10 <sup>14</sup> n <sub>eq</sub> /cm <sup>2</sup> and TID=37.2 MRad)                                                                       |              |
| LS4       | Full barrel module with ten ABC130,<br>short and long strips.         | May-16 DESY |                                                                                                                                                                                  |              |
|           |                                                                       |             |                                                                                                                                                                                  |              |







< ロ > < 同 > < 回 > < 回 >

•  $V_{\rm bias}$  dependency, hit likelihood as a function of distance from strip, comparison of efficiency of irradiated and unirradiated modules measured with analog and



• End-of-Lifetime Performance - detection efficiency > 99% at thresholds with



# ITk Strips: module evaluation - testbeam simulations

 Testbeam group works also on preparation of DUT and full testbeam simulations in AllPix and AllPix2 frameworks





## ITk Strips: staves and petals evaluation

• FEA simulation of temperature distribution on stave and petal and its measurement using thermo-mechanical structures

Camera pixel in X

Camera pixel in Y







## ITk Strips: staves and petals evaluation

- metrology measurements of petal flatness
- Eye diagrams resulting from simulation based on measured S-parameters, for 640 Mbit/s (Data) and for direct measurements on test tape







### ITk Strips: global structures evaluation

• FEA model analysis of barrel structure - the 1st z mode, the 2nd z mode and



# ITk Strips: global structures evaluation

#### • FEA simulations for EC blade and EC global structure



Dynamic deformation in X, Y, Z axis with

#### ATLAS ITk Strip status - summary

- ATLAS Inner Tracker Strip Detector TDR has been approved in Q2 2017 by LHCC and UCG committees
- ATLAS ITk Strip collaboration is in a good shape aiming at milestones scheduled for individual detector components
  - Preliminary Design Reviews
  - Final Design Reviews
  - Production Readiness Reviews
- ATLAS Inner Tracker Pixel Detector TDR to be submitted at the end of 2017



Table 24.1: Milestones for the ITk Strip Detector developments

| Milestone                                                                                                                                                                             | Date                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 2.2.1 Sensors<br>Bensor Preliminary Design Review<br>Bensor Final Design Review<br>Bensor Production Readiness Review                                                                 | Q2-2017<br>Q1-2018<br>Q3-2019            |
| 2.2.2 Read-out Chips<br>Opecif cation Review<br>SIGS Preliminary Design Review<br>SIGS Final Design Report                                                                            | Q1-2017<br>Q3-2017<br>Q4-2017<br>Q3-2018 |
| ASICs Production Readiness Review                                                                                                                                                     | Q3-2019                                  |
| 2.3 Modules<br>Specif cation Review<br>Modules Preliminary Design Review<br>Modules Final Design Report<br>Modules Production Readiness Review                                        | Q2-2017<br>Q4-2017<br>Q1-2019<br>Q1-2020 |
| 2.2.4 Local Support Electronics<br>opecif cation Review<br>Feliminary Design Review<br>"inal Design Report<br>"roduction Readiness Review                                             | Q2-2017<br>Q4-2017<br>Q3-2018<br>Q1-2019 |
| 22.5 Fully Loaded Local Support<br>ipecif cations Review<br>cocal support Preliminary Design Review<br>cocal support Final Design Review<br>cocal support Production Readiness Review | Q2-2017<br>Q2-2017<br>Q1-2018<br>Q2-2019 |
| 2.2.6 Global Mechanics<br>Specif cations and Design Review<br>Global support Production Readiness Review                                                                              | Q3-2017<br>Q4-2018                       |
| 2.2.7 Services<br>opecif cations Review<br>Peilminary Design Review<br>'inal Design Review                                                                                            | Q2-2017<br>Q4-2017<br>Q2-2019            |
| 2.2.9 Off-Detector Electronics<br>opecif cations Review<br>Preliminary Design Review<br>Final Design Review                                                                           | Q2-2017<br>Q4-2017<br>Q2-2019            |

・ 同 ト ・ ヨ ト ・ ヨ ト