Status & Challenges of Tracker Design for FCC-hh

Zbyněk Drásal CERN

Overview

- Introduction
 - Future Circular Collider with focus on FCC-hh (pp) option
 - Physics motivation & Reference Detector Layout
- FCC-hh & Radiation Studies
- Tracker design & expected tracker performance
 - Reference tracker geometry & design driving principles
 - Granularity in R-Φ & tracking resolution
 - Implications of high pile-up & high-rate environment
 - → Pattern recognition capabilities & requirements on granularity in Z
 - → Primary vertexing in high pile-up & requirements on timing information
 - → Expected tracker occupancy & data rates
- Summary & Challenges

Road-map & Timescale

- LHC detector R&D started in the 1980's (HL-LHC in the 2000's)
 - FCC R&D will build on that for HL-LHC, but with more advanced technologies. That requires long lead times...

Road-map & Timescale

- LHC detector R&D started in the 1980's (HL-LHC in the 2000's)
 - FCC R&D will build on that for HL-LHC, but with more advanced technologies. That requires long lead times...

Future Circular Collider

FCC machine:

- FCC-hh (pp collider): final goal defining the whole infrastructure
 - → ~16T magnets → 100TeV pp collider in 97.75km tunnel
- FCC-ee: as possible intermediate step
- FCC-eh: as an option

Future Circular Collider

FCC machine:

- FCC-hh (pp collider): final goal defining the whole infrastructure
 - → ~16T magnets → 100TeV pp collider in 97.75km tunnel
- FCC-ee: as possible intermediate step
- FCC-eh: as an option

- A&G 2 high-luminosity exp.
- L&B 2 other exp.

Key FCC-hh parameters

Parameter		FCC-hh	HE-LHC	(HL) LHC
Collision cms energy [TeV]		100	27	14
Dipole field [T]		16	16	8.33
Circumference [km]		97.75	26.7	26.7
# IP	2	main & 2	2 & 2	2 & 2
Beam current [A]		0.5	1.12	(1.12) 0.58
Bunch intensity [10 ¹¹]	1 1 (0.2)		2.2 (0.44)	(2.2) 1.15
Bunch spacing [ns]	25 (5)		25 (5)	25
beta* [m]	1.1 0.3		0.25	(0.20) 0.55
Luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	(5) 1
# Events/bunch crossing	170	<1020 (204)	~800 (160)	(135) 27
Stored energy/beam [GJ]		8.4	1.3	(0.7) 0.36
Synchrotron rad. [W/m/ap.]		28.4	4.6	(0.33) 0.17

- Baseline (phase 1): 10 yrs of operation @ $L_{peak} = 5x10^{34} cm^{-2} s^{-1} \rightarrow 2.5 ab^{-1}$ per detector
- Ultimate (phase 2): 15 yrs of operation @ $L_{peak} \le 30x10^{34} cm^{-2} s^{-1} \rightarrow 15 ab^{-1}$ per detector
 - → Total: O(20)ab⁻¹ per experiment

Understanding FCC-hh parameters

Parameter		FCC-hh	HE-LHC	(HL) LHC
Collision cms energy [TeV]	100		27	14
Dipole field [T]	16		16	8.33
Circumference [km]	97.75		26.7	26.7
# IP	2 main & 2		2 & 2	2 & 2
Beam current [A]	0.5		1.12	(1.12) 0.58
Bunch intensity [1011]	1 1 (0.2)		2.2 (0.44)	(2.2) 1.15
Bunch spacing [ns]	25 25 (5)		25 (5)	25
beta* [m]	1.1 0.3		0.25	(0.20) 0.55
Luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	(5) 1
# Events/bunch crossing	170 <1020 (204)		~800 (160)	(135) 27
Stored energy/beam [GJ]	8.4		1.3	(0.7) 0.36
Synchrotron rad. [W/m/ap.]	28.4		4.6	(0.33) 0.17

14TeV
$$\rightarrow$$
 100 TeV
 $\sigma_{\text{inelastic}}$: 80mb \rightarrow 108mb
average ρ_{T} : 0.6 \rightarrow 0.8 GeV/c
multiplicity_{charged/unit η} : 5.4 \rightarrow 8

→ the minimum bias events @FCC are quite similar to ones @HL-LHC, but ...

Understanding FCC-hh parameters

Parameter		FCC-hh	HE-LHC	(HL) LHC
Collision cms energy [TeV]	100		27	14
Dipole field [T]	16		16	8.33
Circumference [km]	97.75		26.7	26.7
# IP	2 main & 2		2 & 2	2 & 2
Beam current [A]	0.5		1.12	(1.12) 0.58
Bunch intensity [1011]	1	1 (0.2)	2.2 (0.44)	(2.2) 1.15
Bunch spacing [ns]	25 25 (5)		25 (5)	25
beta* [m]	1.1 0.3		0.25	(0.20) 0.55
Luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	(5) 1
# Events/bunch crossing	170	<1020 (204)	~800 (160)	(135) 27
Stored energy/beam [GJ]	8.4		1.3	(0.7) 0.36
Synchrotron rad. [W/m/ap.]	28.4		4.6	(0.33) 0.17

 $\begin{cases} 14\text{TeV} \rightarrow 100 \text{ TeV} \\ \sigma_{\text{inelastic}} : 80\text{mb} \rightarrow 108\text{mb} \\ \text{average p}_{\text{T}} : 0.6 \rightarrow 0.8 \text{ GeV/c} \\ \text{multiplicity}_{\text{charged/unit }\eta} : 5.4 \rightarrow 8 \end{cases}$

5x increase in pile-up wrt HL-LHC

- → the minimum bias events @FCC are quite similar to ones @HL-LHC, but ...
- → pile-up per bunch crossing O(1000) is a big challenge → keeping 5ns (versus 25ns) operation scheme as an option

Understanding FCC-hh parameters

Parameter		FCC-hh	HE-LHC	(HL) LHC				
Collision cms energy [TeV]	100		27	14				
Dipole field [T]	16		16	8.33				
Circumference [km]	97.75		26.7	26.7				
# IP	2	main & 2	2 & 2	2 & 2				
Beam current [A]		0.5	1.12	(1.12) 0.58				
Bunch intensity [1011]	1 1 (0.2)		2.2 (0.44)	(2.2) 1.15				
Bunch spacing [ns]	25 25 (5)		25 (5)	25				
beta* [m]	1.1 0.3		0.25	(0.20) 0.55				
Luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	(5) 1				
# Events/bunch crossing	170	<1020 (204)	~800 (160)	(135) 27				
Stored energy/beam [GJ]		8.4	1.3	(0.7) 0.36				
Synchrotron rad. [W/m/ap.]	28.4		4.6	(0.33) 0.17				

 $\sigma_{\text{inelastic}}$: 80mb → 108mb average p_T: 0.6 → 0.8 GeV/c multiplicity_{charged/unit η}: 5.4 → 8

6x increase in luminosity wrt HL-LHC

- → the minimum bias events @FCC are quite similar to ones @HL-LHC, but ...
- → pile-up per bunch crossing O(1000) is a big challenge → keeping 5ns (versus 25ns) operation scheme as an option
- → FCC-hh represents an extremely high luminosity machine → expecting huge particle/data rates & significantly higher rad. level in the inner/fwd detector

Physics Requirements on Detector Design

- Design strongly depends on outcome of future LHC discoveries:
 - In case of new discoveries → precise understanding of new physics will motivate the design
 - In case no new physics is discovered → mass scale of new physics may be beyond LHC reach
 or final states are too elusive → higher mass reach, high luminosity machine & precise det. are
 the key!

Physics Requirements on Detector Design

- Design strongly depends on outcome of future LHC discoveries:
 - In case of new discoveries → precise understanding of new physics will motivate the design
 - In case no new physics is discovered → mass scale of new physics may be beyond LHC reach
 or final states are too elusive → higher mass reach, high luminosity machine & precise det. are
 the key!
 - → either way a very general purpose detector is a way to go (similarly as ATLAS or CMS)

Physics Requirements on Detector Design

- Design strongly depends on outcome of future LHC discoveries:
 - In case of new discoveries → precise understanding of new physics will motivate the design
 - In case no new physics is discovered → mass scale of new physics may be beyond LHC reach
 or final states are too elusive → higher mass reach, high luminosity machine & precise det. are
 the key!
 - → either way a very general purpose detector is a way to go (similarly as ATLAS or CMS)

- FCC opens us a new kinematic & dynamical regime, so requirements on tracker:
 - → Extended tracking up-to $|\eta|\sim 4$ (c.f. $|\eta|\sim 2.5$ for LHC exp.) + efficient VBF jet meas. up-to $|\eta|\sim 6$
 - → High p_τ res. ~10-20% @ 10TeV (cf. LHC: 10% @1TeV) & still keep sensitivity to low p_τ tracks + provide efficient b,c,τ-tagging despite huge PU
 - → **High Tracker granularity essential** to resolve jet-substructure (E/HCAL), reject bkg,...

Reference Detector Layout

Reference Detector Layout

Reference Detector Layout

Reference Detector Layout & Magnet

4T solenoid (10m free bore) + 2x 4T Fwd solenoids (no shielding)

Reference Detector Layout & Magnet

4T solenoid (10m free bore) + 2x 4T Fwd solenoids (no shielding)

FCC-hh & Radiation Rates?

• Neutron fluence rates @L=30x10³⁴ cm⁻²s⁻¹

Courtesy of M.I.Besana

→ 2 main hot spots: FWD calorimeter & TAS

FCC-hh & Radiation Rates?

Neutron fluence rates @L=30x10³⁴ cm⁻²s⁻¹

Courtesy of M.I.Besana

- → 2 main hot spots: FWD calorimeter & TAS
- → Shielding scheme effective, but several leakage channels appear due to service channels etc.

Cast iron shielding

Shielding FwdCAL: 5cm Li polyethylene between 2mm Al

Tracker & Long-term Damage after 30ab⁻¹

• 1 MeV neq fluence after 30ab⁻¹

Long-term damage for Tracker after 30ab⁻¹

Long-term damage for Tracker after Joan								
R [mm]	z[m]	Dose [MGy]	1 MeV equivalent Fluence [cm ⁻²]					
25	0	320	5.5 10 ¹⁷					
60	О	88	1.25 10 ¹⁷					
100	0	40	6 10 ¹⁶					
150	0	23	3.3 10 ¹⁶					
270	0	8.8	1.51 10 ¹⁶					
900	0	0.65	3.2 10 ¹⁵					
25	5	410	3.7 10 ¹⁷					
50	16	250	2 10 ¹⁷					

Radiation @ FCC:

—➤ @R=25mm: ~6x10¹⁷ neq cm⁻², TID~0.4GGy

Courtesy of M.I.Besana

• LHC = 1

HL-LHC → 20x LHC

• FCC → 600x LHC

Tracker & Long-term Damage after 30ab⁻¹

• 1 MeV neq fluence after 30ab⁻¹

Long-term damage for Tracker after 30ab⁻¹

Long term damage for fracker after coas								
R [mm]	z[m]	Dose [MGy]	1 MeV equivalent Fluence [cm ⁻²]					
25	0	320	5.5 10 ¹⁷					
60	0	88	1.25 10 ¹⁷					
100	0	40	6 10 ¹⁶					
150	0	23	3.3 10 ¹⁶					
270	0	8.8	1.51 10 ¹⁶					
900	0	0.65	3.2 10 ¹⁵					
25	5	410	3.7 10 ¹⁷					
50	16	250	2 10 ¹⁷					

Radiation @ FCC:

—➤ @R=25mm: ~6x10¹⁷ neq cm⁻², TID~0.4GGy

• LHC = 1

HL-LHC → 20x LHC

• FCC → 600x LHC

HL-LHC rad. tolerance limit @R~270mm for z=0m (z-pos. dependent)

Courtesy of M.I.Besana

Tracker Layout & Design Driving Principles

- Key tracker parameters:
 - **Granularity in R-Φ** → driven by requirement on dp_{τ}/p_{τ} , efficient tagging of displ. vertices (d0) &

$$\begin{array}{|c|c|} \hline \Delta p_{\mathrm{T}} & = & \frac{\sigma[\mathrm{m}] \, p_{\mathrm{T}} [\mathrm{GeV/c}]}{0.3 \, B[\mathrm{T}] \, L^2[\mathrm{m}^2]} \, f(N) \\ \hline N_{\mathrm{layers}} & \vdots \, 10 (7.5) \mathrm{um} \\ \end{array} \right\}$$

L: 1.55m
B: 4T
$$\sigma_{R-\Phi}$$
: 10(7.5)um
 N_{lavers} : 12

~ 20% @ 10TeV/c

Tracker Layout & Design Driving Principles

- Key tracker parameters:
 - Granularity in R-Φ → driven by requirement on dp_T/p_T, efficient tagging of displ. vertices (d0) & occupancy limit (~1%)
 L: 1.55m

– **Number of layers N** → driven by $dp_{_{T}}/p_{_{T}}$ res. & pattern recognition capabilities Note: res. improves as $1/\sqrt{N_{layers}}$, but material budget (MB) increases as N_{layers}

Low MB Important!

Tracker Layout & Design Driving Principles

Key tracker parameters:

Granularity in R-Φ → driven by requirement on dp_T/p_T, efficient tagging of displ. vertices (d0) & occupancy limit (~1%)
 L: 1.55m

$$\frac{\Delta p_{\rm T}}{p_{\rm T}} = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N)$$

$$\begin{array}{c} \text{B: 4T} \\ \sigma_{\rm R-\phi} : 10(7.5) \text{um} \\ N_{\rm lavers} : 12 \end{array}$$

$$\begin{array}{c} \sim 20\% @ 10 \text{TeV/c} \\ \text{N}_{\rm lavers} : 12 \end{array}$$

Number of layers N → driven by dp_T/p_T res. & pattern recognition capabilities
 Note: res. improves as 1/√N_{layers}, but material budget (MB) increases as N_{layers}

Low MB Important!

Granularity in Z → driven by pattern recognition capabilities, occupancy limit (~1%) & primary vertexing in given pile-up O(1000)

Reference Tracker Layout (v3.03)

Pixels: 25x50um² (1-4th BRL layers, EC R1),

100/3x100um² (R2), 100/3x400um² (R3,R4)

Macro-pixels: 100/3x400um²

Strips : 100/3umx50mm (BRL),

100/3umx10mm (EC)

→ Assumed binary R/O → res. ~ pitch/√12

Reference Tracker Layout (v3.03)

Pixels: 25x50um² (1-4th BRL layers, EC R1),

100/3x100um² (R2), 100/3x400um² (R3,R4)

Macro-pixels: 100/3x400um²

Strips : 100/3umx50mm (BRL),

100/3umx10mm (EC)

→ Assumed binary R/O → res. ~ pitch/√12

~ Dimensions of CMS tracker

Huge increase in #pixel channels wrt LHC exp. due to:

- requirements on tracking up to n=6
- resilience to **high rad. levels** generated by FCC-hh

For details see http://fcc-tklayout.web.cern.ch

Material Budget & Tracking Resolution

A simplified model for MB assumed:

x/x0 ~1-2.5% per layer (services accumul. effect)
 (20% Si, 42% C, 2% Cu, 6% Al, 30% Plastic)

→ technology input needed for more real. estimate^{0.4}

Material Budget & Tracking Resolution

Material budget

BRL

2.5%

2.0%

.0%

BP

A simplified model for MB assumed:

x/x0 ~1-2.5% per layer (services accumul. effect)
 (20% Si, 42% C, 2% Cu, 6% Al, 30% Plastic)

→ technology input needed for more real. estimate ••

• Tracking resolution (tkLayout SW):

Tracker rad. length map

Vertex Detector & Flavour Tagging

- Flavour tagging represents another important aspect of vertex detector & tracker design:
 - Tagging of very high-energy jets (p_T>1TeV/c) is extremely challenging, not only because of very collimated particles, but also due to extremely long-lived hadrons (displaced vertices):
 E.g. 5TeV central b-jets → B-hadrons decay outside the vertex detector in ~50% cases

Courtesy of E. Perez Codina

→ Example of B-tagging efficiency

versus MB & granularity

VTX det. pitch 20x20um² versus 25x50um²

Tracker: half MB/default

Pattern Recognition (PR) Capabilities

• Tracker granularity in Z is strongly affected by requirement on PR capabilities! How to study such effects analytically? Use track propagator & analyze layout "weak" spots:

→ Assume **perfect seeding** → propagate analytically $\sigma_{r\phi}$, σ_z to ith layer in → out

→ Calculate probability **p** to mis-match a **real hit anywhere** on the track with a **bkg hit** @95% CL in PU=1000

$$p = 1 - \prod_{i=4}^{N} (1 - p_{\text{bkg}95\%}^{i})$$

@ 95% conf. level

Pattern Recognition (PR) Capabilities

• Tracker granularity in Z is strongly affected by requirement on PR capabilities! How to study such effects analytically? Use track propagator & analyze layout "weak" spots:

→ Assume **perfect seeding** → propagate analytically $\sigma_{r\phi}$, σ_z to ith layer in → out

→ Calculate probability **p** to mis-match a **real hit anywhere** on the track with a **bkg hit** @95% CL in PU=1000

$$p = 1 - \prod_{i=4}^{N} (1 - p_{\text{bkg95\%}}^{i})$$

@ 95% conf. level

→ How to interpret & set a limit value on p?

Understanding Track Propagator in PR

- 4 key parameters affecting propagation of error ellipse:
 - \rightarrow Multiple scattering & material effect @ 9 (tilt angle α)
 - → Propagation distance
 - → Projection factor on det. plane
 - → Detector resolution

$$\sigma_{\text{MS}}^{2} \approx \langle \vartheta_{p_{T}}^{2} \rangle \frac{d/X_{0}}{\sin(\vartheta + \alpha)} \Delta r^{2} f_{\text{proj}}$$

$$\langle \vartheta_{p_{T}}^{2} \rangle = \left(\frac{13.6 \,\text{MeV}}{\beta p_{T} c}\right)^{2} \left(1 + 0.038 \ln \frac{d/X_{0}}{\sin(\vartheta + \alpha)}\right)^{2}$$

$$f_{\text{proj}} = \left(\frac{1}{\sin(\vartheta + \alpha)}\right)^{2} \text{proj. in Z}$$

$$f_{\text{proj}} = 1 \quad \text{proj. in R} -\Phi$$

$$\begin{array}{rcl} \sigma_{R\Phi} & = & \sqrt{\sigma_{R\Phi_{\mathrm{loc}}}^2 + (A/\sqrt{1 - A^2} \sin \alpha)^2 \sigma_{Z_{\mathrm{loc}}}^2} \\ A & = & \Delta r/2R \end{array}$$

Understanding Track Propagator in PR

- 4 key parameters affecting propagation of error ellipse:
 - \rightarrow Multiple scattering & material effect @ 9 (tilt angle α)
 - → Propagation distance
 - → Projection factor on det. plane
 - → Detector resolution

$$\sigma_{\text{MS}}^{2} \approx \langle \vartheta_{p_{T}}^{2} \rangle \frac{d/X_{0}}{\sin(\vartheta + \alpha)} \Delta r^{2} f_{\text{proj}}$$

$$\langle \vartheta_{p_{T}}^{2} \rangle = \left(\frac{13.6 \,\text{MeV}}{\beta p_{T} c}\right)^{2} \left(1 + 0.038 \ln \frac{d/X_{0}}{\sin(\vartheta + \alpha)}\right)^{2}$$

$$f_{\text{proj}} = \left(\frac{1}{\sin(\vartheta + \alpha)}\right)^{2} \text{proj. in Z}$$

$$f_{\text{proj}} = 1 \quad \text{proj. in R} -\Phi$$

$$\sigma_{R\Phi} = \sqrt{\sigma_{R\Phi_{loc}}^2 + (A/\sqrt{1 - A^2} \sin \alpha)^2 \sigma_{Z_{loc}}^2}$$

$$A = \Delta r/2R$$

Understanding Track Propagator in PR

- 4 key parameters affecting propagation of error ellipse:
 - \rightarrow Multiple scattering & material effect @ ϑ (tilt angle α)
 - → Propagation distance
 - → Projection factor on det. plane
 - → Detector resolution

$$\sigma_{\text{MS}}^{2} \approx \langle \vartheta_{p_{T}}^{2} \rangle \frac{d/X_{0}}{\sin(\vartheta + \alpha)} \Delta r^{2} f_{\text{proj}}$$

$$\langle \vartheta_{p_{T}}^{2} \rangle = \left(\frac{13.6 \,\text{MeV}}{\beta p_{T} c}\right)^{2} \left(1 + 0.038 \ln \frac{d/X_{0}}{\sin(\vartheta + \alpha)}\right)^{2}$$

$$f_{\text{proj}} = \left(\frac{1}{\sin(\vartheta + \alpha)}\right)^{2} \text{proj. in Z}$$

$$f_{\text{proj}} = 1 \quad \text{proj. in R} -\Phi$$

$$\sigma_{R\Phi} = \sqrt{\sigma_{R\Phi_{loc}}^2 + (A/\sqrt{1 - A^2 \sin \alpha})^2 \sigma_{Z_{loc}}^2}$$

$$A = \Delta r/2R$$

To min. mat. effects, tracker in tilted layout advantageous!

Tilted Geometry: Design Proposal v4.01

- Layout of outer tracker driven by requirement on p~0.2:
 - uppermost layer designed non-tilted to keep the highest possible lever-arm
 - modules positioned as to hermetically cover full luminous region

- Layout of inner tracker driven by p~0.2
 & requirement on best z0 res.:
 (to deal with primary vertexing @PU~1000):
 - → tilt angle of 1st layer: $\theta_{tilt} \simeq 10^{\circ}$ set as a compromise between low MB & high radius

Tilted Layout: Improvement in Performance

→ Approach constraint: Mat. budget assumed per module → need to add realistic engineering: services etc.

Tilted Layout: Improvement in Performance

→ Approach constraint: Mat. budget assumed per module → need to add realistic engineering: services etc.

Tilted Layout: Improvement in Performance

→ Approach constraint: Mat. budget assumed per module → need to add realistic engineering: services etc.

Tilted layout:

The dominant effect for "low" p_T tracks is beam-pipe mat.!

Vertexing @ PU=1000 & Timing Information

- How the pile-up (PU)~1000 degrades primary vertexing? Would the timing info help?
 - → Dependent on scenario for luminous region (Gauss, "rectangular",...) → simulate **1000 PU** vertices according to Gaussian (HL-LHC) Line & Time PU densities (c.f.: PhysRevSTAB.17.111001)

Vertexing @ PU=1000 & Timing Information

- How the pile-up (PU)~1000 degrades primary vertexing? Would the timing info help?
 - → Dependent on scenario for luminous region (Gauss, "rectangular",...) → simulate **1000 PU** vertices according to Gaussian (HL-LHC) Line & Time PU densities (c.f.: PhysRevSTAB.17.111001)

Piwinsky angle Φ ~ 0.67

Time Piw. angle Ψ ~ 0.40

→ Study what fraction of tracks may be unambiguously assigned to the primary vertex @ 95% CL? Use 2D info (PV assumed to be "precisely" found from e.g. high p_⊤ tracks)

Effective Pile-up Rate & Timing Information

→ Compare FCC-hh to HL-LHC conditions (PU~140), using e.g. CMS Ph2 upgrade layout

Effective Pile-up Rate & Timing Information

→ Compare FCC-hh to HL-LHC conditions (PU~140), using e.g. CMS Ph2 upgrade layout

Why such shape? Follow z0 res. curve...

Decrease in δ z0 needs to be "compensated" by extra timing info (in FWD)

FCC-hh: 2D vertexing (time & z) essential, but may not be sufficient to mitigate the PU effect, namely for $\eta>4.0$

Occupancy & Expected Data Rates @ PU=1000

- Tracker granularity in a view of hit occupancy (~<1%) & data rates @ PU~1000?
 - → use Fluka sim. charged particles fluence & calculate hit occupancy (binary R/O):
- E.g. inner tracker:

Layer no:	1	2	3	4	5	6	Total [TB/s	s]
Radius [mm]:	25.0	60.0	100.0	150.0	270.0	400.0		
Module max occupancy (max[sen1.sen2])[%]:	0.45	0.11	0.05	0.02	0.08	0.04		→ Hit occupancy [%] (~ <1%)
Data rate per layer - 40MHz,spars [Tb/s]:	603.7	379.9	277.3	202.2	138.7	97.5	212.4	→ Layer data rate (40MHz)
Data rate per laver - 1MHz.spars [T]b/s]:	15.1	9.5	6.9	5.1	3.5	2.4	5.3	→ Layer data rate (1MHz, trigger)
Data rate per cm^2 - 40Mhz, spars [Gb/s/cm^2]:	251.82	57.91	26.01	12.98	4.69	2.24		→ Data rate per cm ² (40MHz)
Data rate per cm^2 - 1Mhz,spars [Gb/s/cm^2]:	6.30	1.45	0.65	0.32	0.12	0.06		→ Data rate per cm² (1MHz, trigger)

Challenge: 6.3 Gb/s/cm²

- → Expected **huge tracker data rates: 766 TB/s** (untrig. @40MHz), **19 TB/s** (trig. @1MHz)
- → Expected extreme data flows>>10Gb/s/module (from innermost layers/discs, even when being triggered @1MHz)

Summary & Challenges

- The key tracker parameters have been studied & optimized:
 - → Layout: ~430m² (391m² in tilted layout) of Si, with: 5461M (pixels), 9964M (macropixels), 489M (strips)
 - → The granularity in R-Φ driven mostly by dp₊/p₊ @p₊=10TeV/c → achieved dp₊/p₊ ~20%
 - → The granularity in Z driven by prim. vertexing & pattern recognition capabilities @PU=1000:
 - Due to minimized mat. budget the tracker (even vertex detector) in tilted layout very advantageous to achieve similar pattern recognition performance as with PU~140 & HL-LHC conditions
 → realistic engineering (technology input) with services, cooling & support structure important!
 - Primary vertexing & correct PV assignment @PU=1000 seems feasible up-to η~4, but only
 with precise timing information σ_t~5ps (2D vertexing, several timing layers assumed) → the limiting
 factor for high η coverage is beam-pipe material
 - → Expected data rates (**766 TB**/s untriggered, **19 TB**/s triggered @**1MHz**) implicate need for new read-out technologies (high speed, low power optical links) & dedicated trigger design!
 - → 1MeV neq fluence ~6x10¹⁷cm⁻² & TID ~0.4GGy @ R=25mm represent new challenges for the tracker (vertex detector) technologies
 - → Dedicated R&D is needed to meet the challenging requirements!

