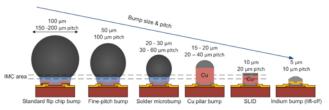
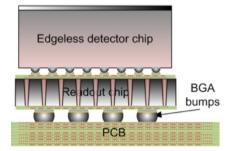
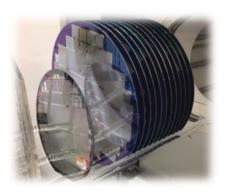

$\land D \lor A \Box A M$




Solutions for flip chip bonding of future pixel detectors



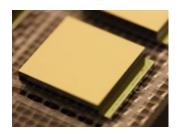
Outline

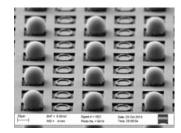
- Introduction to Advacam
- Ideal pixel detector interconnect structure
- New challenges in the flip chip process
 - 65nm CMOS technology 300mm wafers
 - Finer pitches requested going towards 20 um
 - Larger CMOS chips
- Suggested solder bump structures (Cu pillars)
- Flip chip bonding of thin chips
- Modules with Through Silicon Vias (TSV)
- Cost issues & potential solutions
- Summary


Introduction to Advacam

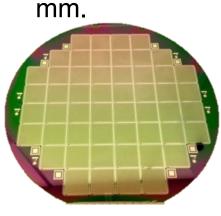
- ADVACAM consists of two units:
 - Advacam Semiconductors, Espoo, Finland
 - Sensors & hybrid pixel modules (since 2012)
 - One stop shop for your pixel assemblies
 - Spin-off from VTT Technical Research Centre of Finland
 - Advacam Cameras, Prague, Czech Republic
 - Photon counting cameras and solutions (since 2013)
 - Spin-off from Institute of Experimental and Applied Physics, Prague
 - Advacam employs 28 people in total
 - <u>www.advacam.com</u>

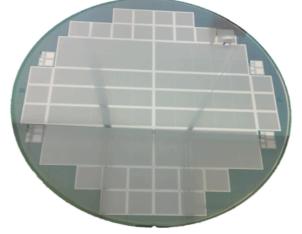
MINIPIX

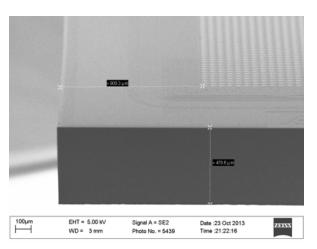



Service Concept of Advacam Semiconductors

- Commercialization of long term research done by VTT
 - Office in Micronova building <u>www.micronova.fi</u>
 - Access to all process tools in VTT's clean room
- Advacam is the "garage" of very challenging fabrication services within radiation pixel detectors
- Unique radiation pixel detector fabrication + flip chip service
 - Planar & edgeless Si sensors
 - Flip chip bonding of compound semiconductor sensors
 - Full value chain covered within the same company
- Services from prototyping to production
- Looking for regular production work with emphasis in gathering more statistics of the process steps, for maintaining quality and investing in new equipment

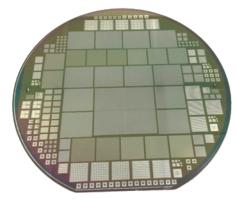


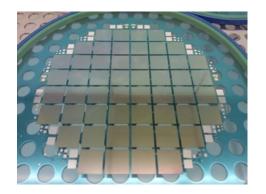


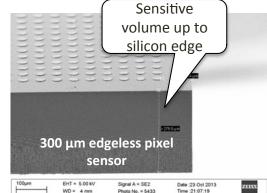


Si Sensor Processing

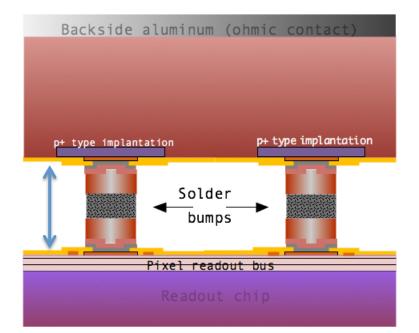
 Advacam has experience in manufacturing customized "planar" pixel sensor on 6" (8" R&D) wafers ranging from thickness of 100 um to 1

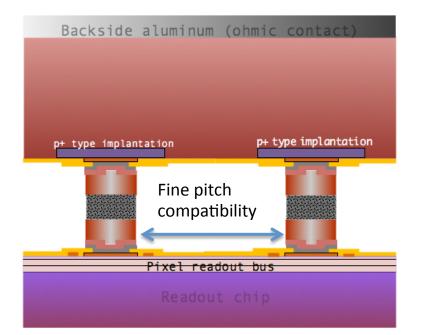


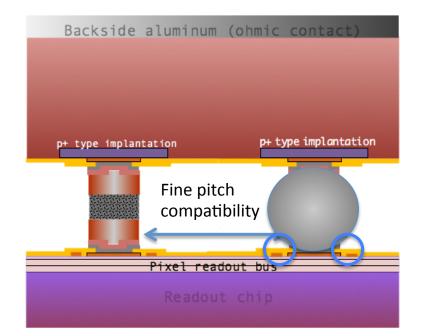


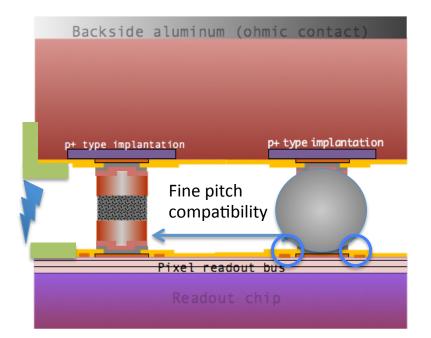


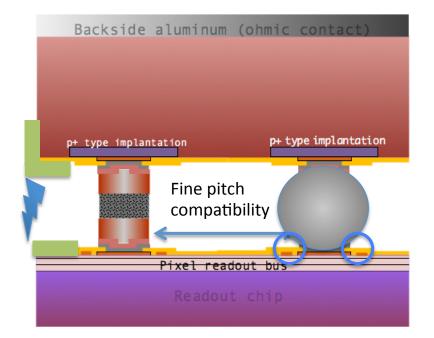
8" (200 mm) wafer


 Advacam has experience in manufacturing "edgeless" and ultra thin sensor 6" wafers ranging from thickness of 5 um to 675 um




- Favorable characteristics:
 - High stand-off height
 - Less sparking
 - Reduced capacitive coupling between sensor and ASIC
 - Improved mechanical reliability


- Favorable characteristics:
 - High stand-off height
 - Less sparking
 - Reduced capacitive coupling between sensor and ASIC
 - Improved mechanical reliability
 - Ultra-fine pitch interconnects
 - Smaller pixel size


- Favorable characteristics:
 - High stand-off height
 - Less sparking
 - Reduced capacitive coupling between sensor and ASIC
 - Improved mechanical reliability
 - Ultra-fine pitch interconnects
 - Smaller pixel size
 - Small bump footprint
 - Minimize capacitive coupling to digital circuitry

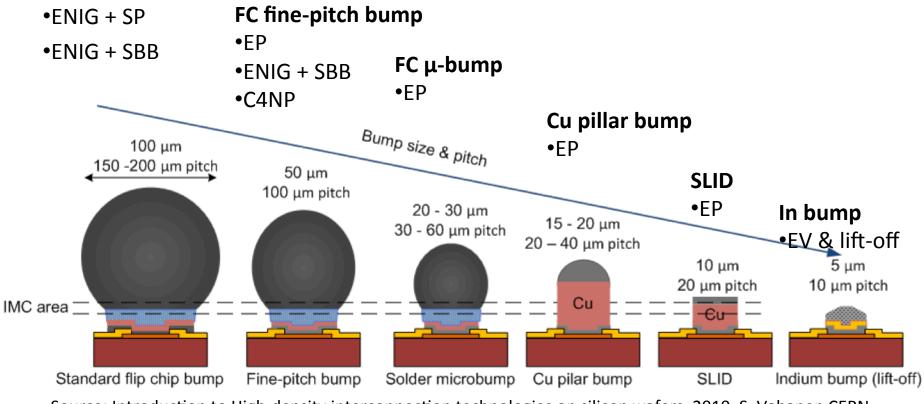
- Favorable characteristics:
 - High stand-off height
 - Less sparking
 - Reduced capacitive coupling between sensor and ASIC
 - Improved mechanical reliability
 - Ultra-fine pitch interconnects
 - Smaller pixel size
 - Small bump footprint
 - Minimize capacitive coupling to digital circuitry
 - Polymer dielectric
 - Coatings to prevent sparking at periphery

- Favorable characteristics:
 - High stand-off height
 - Less sparking
 - Reduced capacitive coupling between sensor and ASIC
 - Improved mechanical reliability
 - Ultra-fine pitch interconnects
 - Smaller pixel size
 - Small bump footprint
 - Minimize capacitive coupling to digital circuitry
 - Polymer dielectric
 - Coatings to prevent sparking at periphery
 - Thin sensor/ ASIC (high-energy physics)
 - Thick sensor (Si, GaAs, Cd(Zn)Te...) for X-ray imaging
 - Compact size
 - 4-side buttability TSV's and edgeless Si sensors

Trends and Challenges in the Flip Chip Process

- Currently, the pixel CMOS ASICs are mainly fabricated on 200 mm and Si pixel sensor chips on 150 mm Si wafers
 - Many vendors for bumping and flip chip bonding
- High-Energy Physics (HEP) community is going for 65 nm CMOS technology (RD53 ATLAS & CMS)
 - Increase or wafer size from 200 mm to 300 mm (RD53, CLICPIX & Timepix4)
 - There are only few research organizations who are able do the wafer bumping, thinning and dicing in-house
- Ultra-fine pixel pitches desired
 - Pixel electronics are getting smarter generic benefit of having smaller pixels
 - Tracking CLICPIX & Mönch 25 um pitch
 - Industrial application examples: Dental (intra-oral) X-ray imaging 25 um pitch, nondestructive testing, mammography etc.
- Larger chips are desired
 - Flip chip bonding is expensive in small series larger area covered by single module
 - Larger full field of view
- Ultra-thin modules needed for HEP experiments
 - Issues with flip chip bonding bow of the CMOS ASICS
 - Low-temperature bonding processes favorable
- Handling of Through Silicon Vias (TSV) wafers and chips
- <u>Technological challenges will raise to next level, but the fabrication of the modules should be cheaper than ever?!!!</u>

Solder Bump Structure

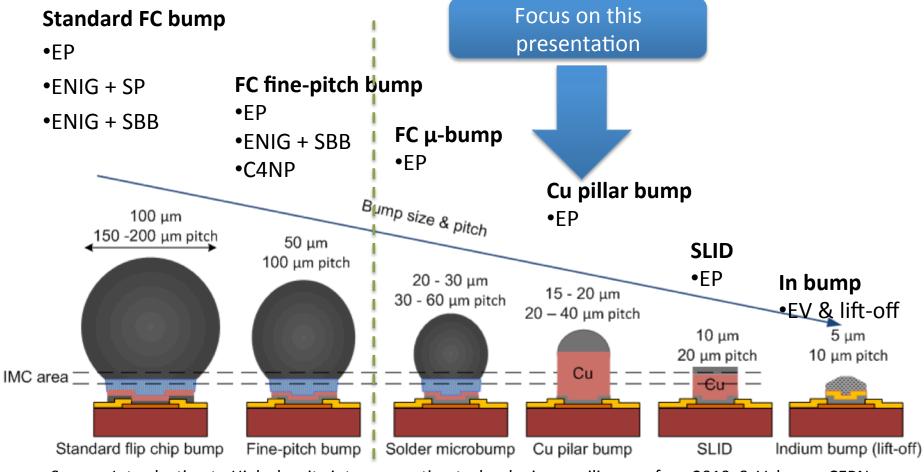

Bumping techniques available:

•Electroplating = EP, Solder ball placement = SBB, Evaporation = EV, Stencil Printing = SP, ENIG = Electroless Ni/Au.

• Pay attention to the solder volume with reducing pitch

Standard FC bump

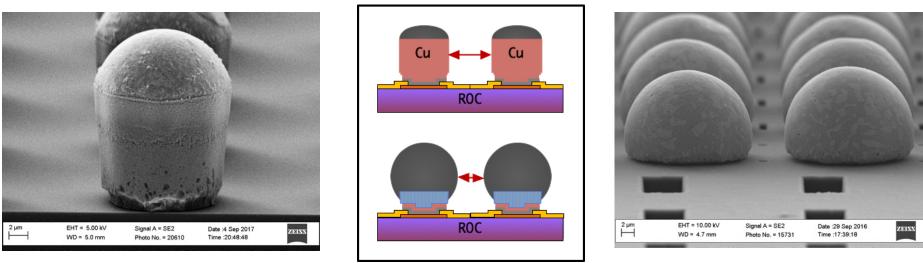
Source: Introduction to High-density interconnection technologies on silicon wafers. 2010. S. Vahanen CERN


12/09/17 Sami Vähänen Advacam (sami.vahanen@advacam.com) - VERTEX 201

Solder Bump Structure

• Bumping techniques available:

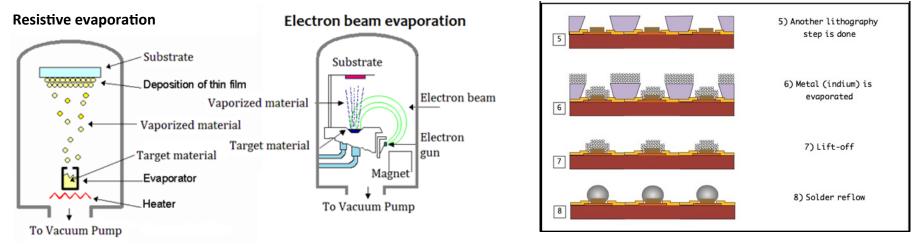
•Electroplating = EP, Solder ball placement = SBB, Evaporation = EV, Stencil Printing = SP, ENIG = Electroless Ni/Au.


• Pay attention to the solder volume with reducing pitch

Source: Introduction to High-density interconnection technologies on silicon wafers. 2010. S. Vahanen CERN

Solder bump structure – Cu Pillar with Solder Cap

- Cu pillar bump structures with solder (AgSn) cap have become mainstream
 - Widely available for bumping of 300 mm wafers standard lead-free solution (mainstream)
 - Benefits: Compliant with fine pitches (low risk for shorting pixels), high stand-off height, relatively low radiation length and straightforward process transfer from 200 mm to 300 mm.
 - Very low risk for having shorted pixels during flip chip bonding
 - Electrical benefits: tall and fine-diameter pillars will reduce coupling to digital circuitry in pixels and thus reduce electronic noise and also reduce sparking between sensor and readout chips.

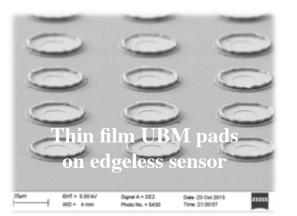

Cu pillars with solder cap @ 25 um pitch

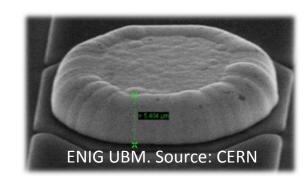
2/09/17 Sami Vähänen Advacam (sami.vahanen@advacam.com) - VERTEX 2017

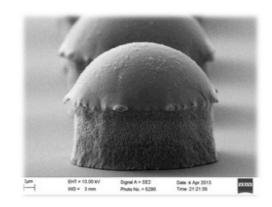
Ni/SnPb solder bumps @ 25 um pitch

Solder bump structure – Evaporated In Bumps

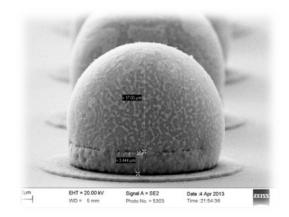
- Indium bumps have been widely used in pixel detectors.
- Evaporation of indium bumps becomes difficult for 300 mm wafers
 - Waste of expensive In during evaporation only fraction of the material ends up on the wafer
 - Very low stand-off height for the assembly (5 um 10 um) for ultra fine pitches
 - Electroplating of In is not yet common for 300 um wafers but it's technically feasible
 - Electroplating is recommended over evaporation
 - High deposition rate & taller bumps

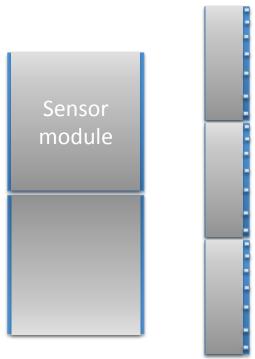



Principle of evaporation (www. http://hivatec.ca)


Evaporation-based bump deposition

Sensor Wafers - Solder bump structure

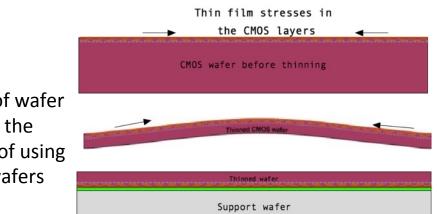

- Greater variety of bump/UBM materials available for the 6" – 8" Si sensor wafers
 - Thin film UBM pads & solder bumps with different materials
 - PVD deposition, electroless plating & electroplating
 - Thin sensor wafers require carrier wafers
 - Mechanical support & heat dissipation during processing
 - Hybrid solder bump structures AgSn solder low melting point metal/solder alloy
 - Facilitates flip chip bonding of thin chips
 - Risk: very complicated inter-metallic compounds reliability?

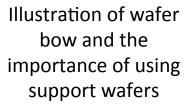

Cu pillars

Standard electroplated solder bumps

Large ASICs

- Some applications require certain imaging sensor element size, which may be realised with stitching of reticles in CMOS process
 - + Less single modules = less flip chip placements cost efficiency from assembly point of view
 - + Favours simple CMOS designs
 - Reduced electric yield of ASIC
 - Requires very good flip chip process (UBM/bumping/FC bonding) yield
 - Potential limitations with pixel pitch using compound semiconductor sensors
 - Thin ASICs will increase the complexity
- 2-side-buttable modules for row cameras
 - In-line scanning application
- Thin chips: Flip chip bonding of single chips of full thickness Si chips chip-tochip or chip-to-wafer and thinning of the ASICs afterwards
 - Cost-efficient process




Illustration of row cameras

ASICs - Thinning

- CMOS layers ~15 µm consist of stack of metal and dielectric layers
 - Glass dielectrics have low Coefficient of Thermal Expansion (CTE), but have high intrinsic stresses.
 - Domination of stresses at room temperature
 - Metals have high CTE
 - Domination of stresses at elevated temperatures
- Thin chips do not have much of supporting Si
 - Radical bending of chips (thickness < 300 µm) as a function of temperature
 - Corner joints open up during solder reflow of standard FC process

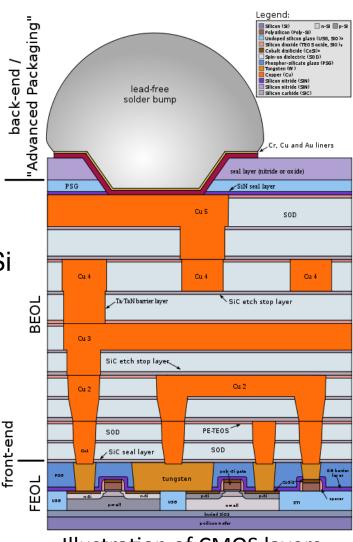
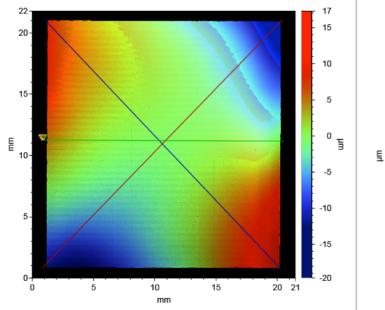
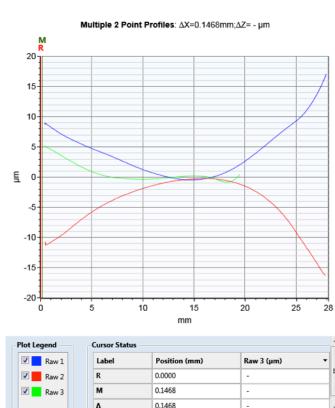
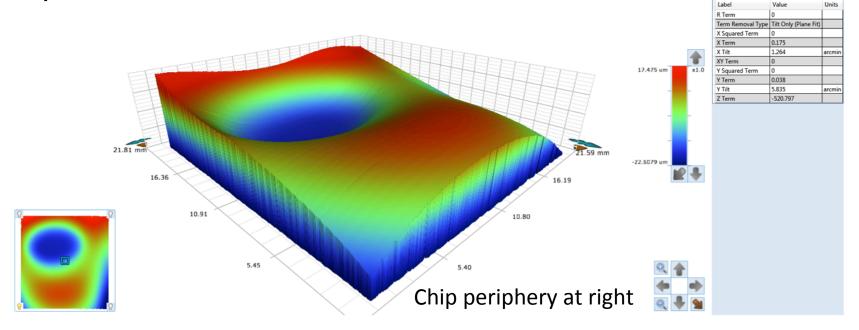




Illustration of CMOS layers Source: Wikipedia "Back end of line"

ASICs – Thinning cntd

- Ultra-thin chips (< 200 um) may have different profiles on wafer-level
- Bow of the ASIC depends on:
 - Actual material, their thickness and structure in CMOS layers CMOS process dependency
 - Stress caused by solder bumps
 - Back-grinding damage

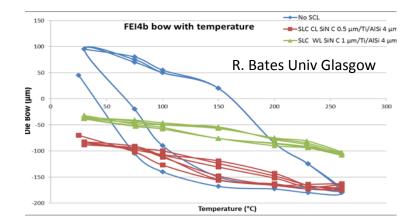

Analytica	°\$	
Label	Value	Units
Average	0	nm
Data Points	1779906.944	
Percent Data Points	82.04	%
Ra	3.588	μm
Rp	17.283	μm
Rq	4.819	μm
Rt	36.972	μm
Rv	-19.689	μm

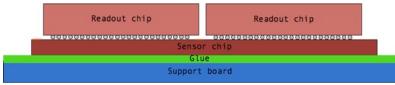
Profile of 100 um thick FE-I4B ASIC with solder bumps. Bow of ~30 um can be seen. Image taken from bulk Si side.

12/09/17 Sami Vähänen Advacam (sami.vahanen@advacam.com) - VERTEX 2017

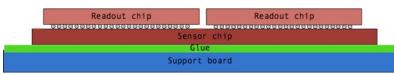
ASICs – Thinning Chip Bonding

 What happens during flip chip/solder reflow with standard FC process?

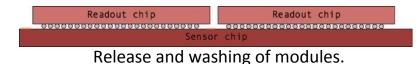

- Profile of 100 um thick FE-I4B ASIC Si sensor module. Bow of ~30 um can be seen. Image taken from bulk Si side.
- Thermal expansion causes the chip to warp during the assembly.
- Solder joints are connected in valleys; peak regions have disconnected bump bonds.


Flip Chip Bonding

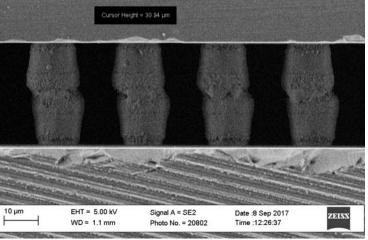
- To cope with the chip bow, the chips have to be kept flat during the flip chip bonding and reflow processes
 - When solder is in molten state and the chips are not hold in parallel, the thin ASIC will bend and open bump bonds.
 - It is very challenging to flip chip bond strongly curved chips without:
 - Support chips/wafers
 - Custom designed tools, jigs or other fixtures.
 - Special solder bump structure
- Solutions:
 - Thermo-compression bonding processes favored
 - Permanent bonding rework won't be easy problem with multi-chip modules (exception: In – In bump bonding)
 - Flip chip bonders with formic acid option solves the bonding problem, but slows bonding rate.
 - Low temperature flip chip bonding
 - One alternative is to keep the chips flat during the reflow using jigs & fixtures during the reflow process fully compatible with all flip chip bonders
- Solutions must be cost efficient!


Flip Chip Bonding of Thin ASICs - Remedies

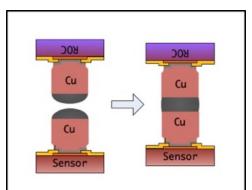
- Deposition of the Stress Compensation Layers
 - Difficult to control no consistency from chip-to-chip and from wafer-to-wafer.
 - Technology transfer from 200 mm to 300 mm wafers might be very tricky.
 - It helps but doesn't solve the problem alone.
- Carrier chips/wafers during flip chip bonding
 - Works well, but increases the cost of the process (bonding and release steps).
 - Dicing through glass carrier Si CMOS wafer brings some restrictions to dicing precision – wider blades have to be used.
- Support during reflow Advacam method
- Flip chip bonding at lower temperatures
 - Alternative #1 Hybrid bump structures with low melting point alloy on one side
 - Alternative #2 In In bonding
- Use of relatively small chips
 - Less bow
- Crazy idea: Thinning of modules after flip chip bonding
 - Feasible if the bump density is high enough
 - Solves the biggest technical and cost related problems, but moves the problem to another step.
 - Simple grinding tools focus on developing fixtures
 - Protection of the wire bonding pads

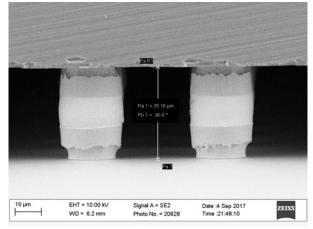


Multi-chip modules glued on support wafer. Protection of WB pads.



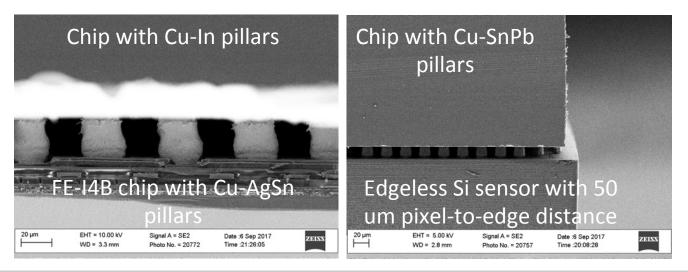
Grinding of the readout chips to desired thickness. Grinding sets requirements for the pixel density.



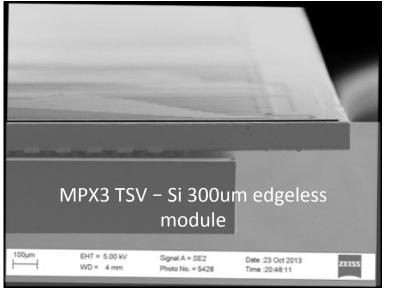

Cu pillar bumps

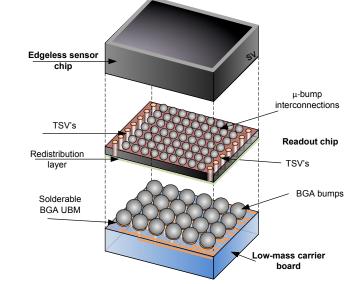
- Cu pillar bumps with solder cap is the solder bump structure to bet in future
 - They're on Advacam roadmap
- ASIC wafers will have electroplated Cu/AgSn or Cu/In solder bumps
- Sensor wafers could have electroplated Ni or Cu UBM with indium solder cap
- Volume of the solder cap is crucial with Cu pillars (see picture)
- Cu/In vs. Cu/In bump structure would solve many issues
 - Room/low temperature flip chip bonding less bow on thin ASICs
 - High stand-off height helps with underfilling
 - Compatibility with compound semiconductor sensors

FC bonded Cu pillars with SnPb cap @ 25 um pitch with 30 um stand-off height

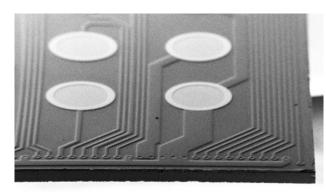


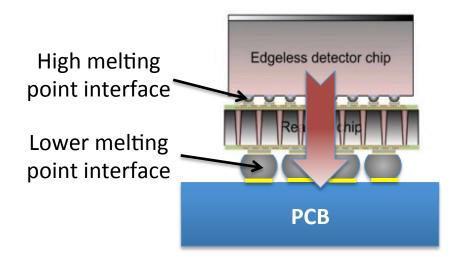
Bonded Cu pillars with In cap @ 50um pitch with 35 um stand-off height

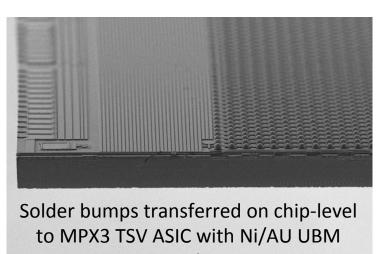

Flip chip bonding


- Cu-AgSn pillar flip chip bonding works against Cu-In structure at rather low reflow temperature 185°C
 - AgSn bumps typically require reflow at 250°C
 - Demonstrated with FE-I4B ASICs (50 um pitch)
 - Further tests needed as Ag may cause reliability issues in the complex solder joint
- Cu-SnPb solder pillars at 25 um pitch were demonstrated with edgeless Si sensor with thin film Ni/Au UBM pads
 - Risk of solder bridges is eliminated during flip chip bonding step using pillar structure

Through Silicon Vias (TSV)

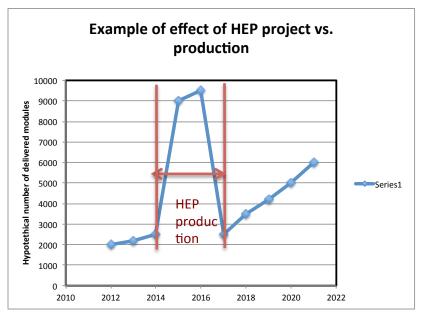

- TSV's are needed for 4-side buttable modules with minimal periphery extension
 - Construction of large panels out of single modules
- Edgeless sensors are needed to minimize the footprint of the modules
- It is challenging to deposit the solder bumps on the TSV ASIC wafers
 - TSV process becomes very complex solder bumps suffer from high process temperatures
 - Thin (100 um) thick TSV ASICs need carrier substrates during solder reflow step




Through Silicon Vias (TSV) - cntd

- Solder bumps have to be deposited on the sensor wafers
 - Wafer-level solder plating on sensor wafers
 - Chip-level solder transfer complex process only for small series prototyping
 - Flip chip and BGA bumps must have a melting point hierarchy
 - Flip chip bonding of thin TSV ASICs with RDL layer has shown to be easier than thin chips without RDL

SEM image of the RDL layer of MPX3 TSV ASIC



100 µm	EHT = 5.00 kV	Sig O D=CES	Date :17 Mar 2017	ZEISS
├───┤	WD = 1.7 mm	Photo No. = 17150	Time :17:16:49	

Cost

- Cost of bump bonding is high because of rather small series and lack of constant production
 - Pricing can be greatly affected when closing the annual production capacity
- HEP experiments provide lot of one-time work for short to mid-term
 - Cannot justify investment in the process equipment without consistent production
 - Hiring of personnel is problematic (fixed term contracts)
 - Cheaper bump bonding prices come along the growth of generic service sales for the industrial partners
- Common volume-based (scientific & industrial) need defines the cost of services
- Keep the technical specifications as easy as possible simplicity rocks!
 - Lower cost of services
 - Thinning of multi-chip modules could be done outside high-end clean rooms

Solutions: 200 mm Si Sensor Wafer Fabrication

Acceptance range for

675 μm thick wafers:

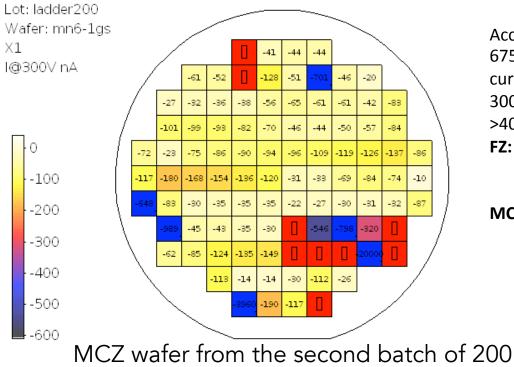
300 V & breakdown

FZ: median leakage

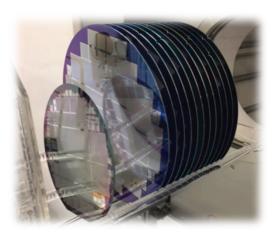
>400 V

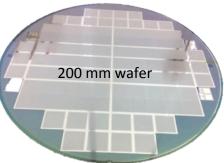
current <300 nA/cm² @

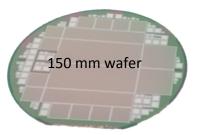
current 26 nA/


current 30 nA/

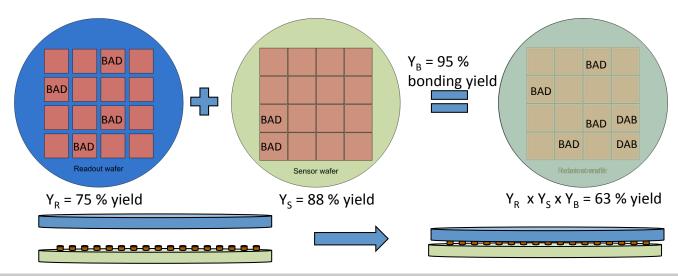
MCZ: median leakage


cm² second batch


cm² second batch


- Two sensor batches finished
- Processed 9 pcs of 200 mm wafers so far
- Wafer thicknesses: 300, 380, 500 & 675 μ m
- Support wafers needed for ≤300 um thick sensor wafers
- Sensor polarity: P-on-N
- Wafer types used:
 - N FZ <100>, ~5000 Ωcm
 - N MCZ <100>, ~5000 Ωcm
- Part of the process steps subcontracted
- Wafers have electroplated Ni/SnPb solder bumps

12/09/17 Sami Vähänen Advacam (mmvahanen@advacam.com) - VERTEX 2017



Solutions: Wafer-to-Wafer Bonding

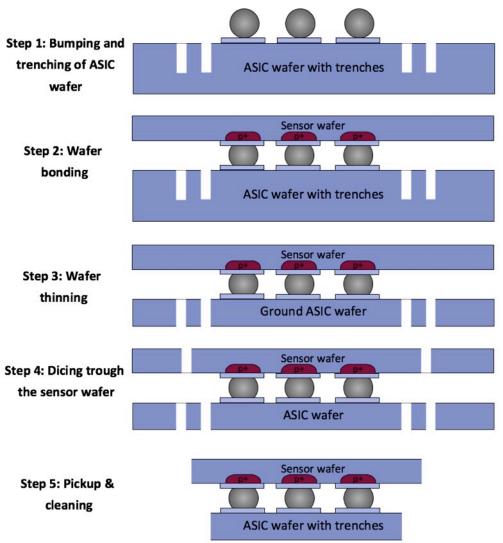
- Advacam has transferred its 6" Si sensor wafer process to 8" wafers
 - Wafer bonding of 200 mm wafers becomes a viable option
 - 2 choices:
 - Bond whole wafers (see backup slides)
 - Prepare built-up wafers from KGD's by stepping the chips on the wafer with adhesive layer (see backup slides)
 - Benefits:
 - Cut down the flip chip bonding price of single modules significantly at coarse pitches (≥ 100 um)
 - Solves the thin chip problem (thinning after wafer bonding)
 - Drawbacks:
 - Potential yield killer combining the yields of two wafers. Guard rings take space on sensors and all the CMOS chips cannot be bonded without a custom design.
- Promising technology for outer low-cost pixel layers with coarse pixel pitch
- Promising for
- Simplicity of the ASIC is important to have high electrical yield
 - ~90% yields required for both the wafers to have sufficient overall yield

12/09/17 Sami Vähänen Advacam (sami.vahanen@advacam.com) - VERTEX 2017

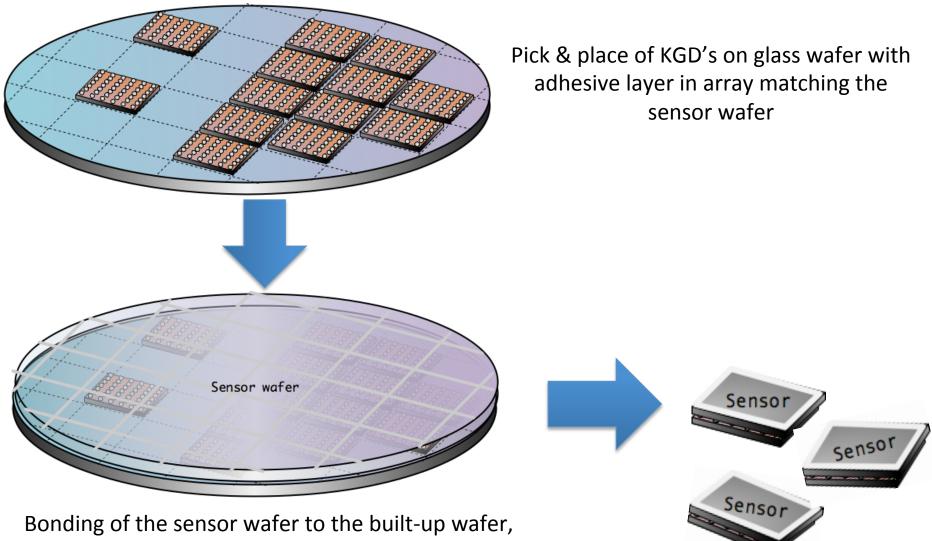
Summary

- Cu pillars with solder cap have prospects to be used for flip chip interconnects for generic pixel detectors.
 - Compatibility with 300 mm ASIC wafers
 - Applicable for ultra-fine pixel pitches high stand-off height
- Cu-In-In-Cu bump bonds are promising for flip chip bonding for thin ASICs
- Multi-element solder alloys / bump structures have potential but need to be studied and tested
- Price level of bump bonding will scale down with regular production
- 200 mm Si sensor wafers enable wafer-to-wafer bonding

Thank You for Your Attention


THE END

Advacam fabricates Si sensors and provides bump bonding services for pixel detectors


Backup slides

Wafer Bonding

- Illustration of the basic wafer bonding scenario with sensors having a guard ring structure
- It is benefical to have rather high interconnects to leave margin for dicing through the sensor wafer

Wafer Bonding Built-up Wafer

Release of ASIC's from glue using laser beam on wafer-level and dicing through the sensor wafer

Chip-to-Wafer Bonding

Technology benefits

- •C2W reduces manual handling of assemblies.
- •Increase in the throughput the whole wafer has to be assembled at the time.
- •Sensors can be bonded against known good dies (KGD) economically efficient.
- •Chips with different sizes can be bonded flexibility!
- •Edgeless sensor chips needed large guard ring structure consumes space on wafers.
- •C2W bonding is currently being used in industry, but it hasn't been used much in assembly of pixel detectors.
- •C2W is an intermediate step towards W2W bonding

•Common assembly cycle:

a)Tack-bonding (pick & place) of individual chips + mass reflow for the device wafer in reducing ambient.

b)Collective bonding can be done in wafer bonder after tack bonding with a cover wafer (slow processes such as hybrid-metal bonding).

•C2W bonding is favored when large and expensive dies are used.

•Optional: thinning after bonding if the whole wafer has been populated by the chips

Stand-off Height - Sparking

- High bias voltage over the sensor may cause sparking
 - ASICs will be killed
- Thick organic dielectric layers are preferred on sensor chips
 - Spin-on photo-sensitive dielectric materials patterned with lithography
 - Electroplating is the only compatible method in terms of step coverage
 - CVD deposition of organic dielectric layer conformal coatings (parylene)
 - Wire-bonding pads have to be protected
- Increasing the stand-off height of the module reduces the sparking as well
 - Double-sided plated Cu pillars