Vertex 2017 poster session summary

Las Caldas 10-15 September 2017

Abraham Gallas
Poster sessions

- Eleven contributions on several topics:
 - Sensor development
 - Front End Electronics for vertexing
 - Mechanics and detector assembly
 - Performance
 - Integration
- Two poster sessions on 11th and 12th September during the coffee break (16:15-16:55)
- Quick review on the highlights of the poster exposition and following discussions
- For further reference go to the poster sessions in the indico page of the conference
Sensor development (I/III)

MuPix8: A large-area D-MAPS chip. Heiko Augustin

- Ultralight-pixel (1‰ RL p/l) tracker with high-rate capabilities for the Mu3e experiment.
- First large area (2x1 cm2) 50 µm thick prototype
- 128 x 200 pixel (81x80 µm2)
- Time-resolutions < 10 ns
- 4x1.25 Gbit/s data links
- 2x more electrons
- Increased TID hardness
- Voltage and temperature stability
- Time walk suppression
- Being tested @ moment
Sensor development (II/III)

- 50 µm thin LGAD fabricated for the High Granularity Time Detector of the ATLAS experiment. Giulio Pellegrini
 - Produced within RD50 collaboration
 - A stack of 3 UFSD reaches 15 ps time res.
 - LGAD with Ga implants fabricated in 2016
 - LGAD fabricated in 6” wafers. 2017
 - Good stability for small pads
 - up to a gain of 40
 - Interest from LHC exps:
 - HGTD, TOTEM,
 - ATLAS-AFP, CMS CT-PPS
 - First LGAD detectors installed in CMS CT-PPS experiment at CERN
Sensor development (III/III)

- **Edge-TCT Characterisation on TowerJazz CMOS Sensor**
- **Towards the ITK Phase II Upgrade.** Abhishek Sharma

ATLAS will upgrade its tracking detector for the HL-LHC

Upgraded ITK will consist of a barrel of 5 concentric layers (5 pixels + 4 Strips)

Requirements:
- Rapid charge collection
- High Spatial resolution
- Reduce charge-sharing
- Radiation hardness up to $1.5 \times 10^{15} \text{ 1 MeV neq/cm}^2$

- TowerJazz prototype with diff pixel sizes (20µm to 50µm)
- Radiation Tolerance (Bulk damage via neutron irradiation, Surface damage via X-ray irradiation)
- Bias voltage scan
- Non-irradiated

13/09/2017
Sensor Simulation

- Radiation Damage Modeling for 3D Pixel Sensors in the ATLAS Detector. Veronica Wallängen
- New digitization model with radiation damage effects to the 3D Pixel sensors for the ATLAS detector.
- Each “hit” of deposited energy is divided into charge chunks propagated separately.
- Diffusion, charge induced, relevant corrections, and trapping taking into account for each charge chunk individually.
- Charge contributions from all chunks added and converted to Time-over-Threshold (ToT) value, or “digit”.

Predictions from 3D digitizer model proved to agree with experimental data.
Material budget measurements with the DATURA beam telescope. Hendrik Jansen

EUDET-type beam telescope (6 Mimosa26 MAPS)

Electrons @ diff energies in the GeV range

Measurement principle:

- Measure kink angle for every track
- Angular distribution is a function of material budget
- Distribution accessible as function of position

Effective scattering angle for each track extracted by a dedicated track model (General Broken Lines model, …)

Calibration with Al plates known thickness

Track-based multiple scattering tomography

Example of technological transfer from HEP to non-destructive material testing
• The VeloPix ASIC test results. E. Lemos

• ASIC for upgraded LHCb Vertex Locator
• Tests:
 • Analog and digital functionalities
 • TID with X-ray up to 400 Mrad
 • SEE (heavy ions and Laser)
 • Beam Test at Fermilab
 • High speed GWT (~5 Gbps)
Front End Electronics (II/II)

- LHCb vertex locator upgrade: front - end electronics and firmware. A. Fernández (presented by E. Lemos)
 - New Front End electronics
 - LHCb MiniDAQ2 with specific firmware.
 - Full electronics validation with GBT and GWT signals (~5 Gbps)
Mechanics and detector assembly (I/II)

• Development of CMS silicon strip detector module mechanics for Phase-II upgrade. Ngangkham Peter Singh (presented by Prafulla Kumar Behera)

• Light, high precision, durable structure for CMS Silicon tracker detector:
 • Al-CF structure with CF stiffeners
 • Very innovative technique using:
 • Micro Abrasive Water Jet (M-AWJ)
 • Precision milling
 • Significant reduction in cost and time
Automated assembly of stacked sensor modules for the CMS outer tracker upgrade. James Keaveney

- Robust, reliable and fast robot
- Relative rotational alignment of sensors to 0.8 mrad
- Built-in metrology
- Build time ~80 minutes
Performance

• **Vertex Reconstruction and Performance in ATLAS.**

 Ben Whitmore

 • Physics output of the ATLAS experiment will increase in the HL-LHC
 • However, the increasing pile-up will degrade the vertex resolution
 • Novel methods to reconstruct vertices in such environments are being developed for the upgrade conditions of ATLAS

 • **Upgraded Inner Tracker (ITK) will replace current tracker**
 • Improve coverage $|\eta|<2.5 \rightarrow |\eta|<4$.
 • Designed to cope with high radiation doses, bandwidth and $<\mu> = 200$
 • Preliminary optimization of the tracker layout performed
 • Order of magnitude improvement in track resolution
Integration

- EMC characterization of vertex detectors within the framework of AIDA2020 project. *M. Iglesias* (presented by F. Arteche)
 - Electromagnetic Compatibility Test facility at ITAINNOVA focused on EMC tests for electronic noise characterization and grounding diagnostics in HEP:
 - Noise emission test
 - Noise immunity level
 - 2-year running:
 - Belle II PXD, SVD detectors
 - Goals of the tests:
 - Grounding topologies evaluation
 - FEE designs, Noise distributions, Filter designs, …