

ILC Vertex Detectors & Silicon Trackers

On behalf of the ILD and SiD detectors R&D groups

Outline

- The International Linear Collider
- ILC Detector Challenges
- Current vertex detector & tracking systems design
- R&D efforts
- Summary and Outlook

The International Linear Collider (ILC)

• e^+e^- Linear Collider 31 km long with baseline $\sqrt{s} = 500$ GeV

- Phases @ 250 & 350 GeV
- Possible Upgrade @ 1TeV
- Baseline beam parameters
 - 2x10¹⁰ parts/bunch spaced by 554 ns
 - Polarization 80/30 for e-/e+
 - $L = 1.8 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

2 Detectors in "push and pull": ILD & SiD

Alejandro Pérez Pérez, VERTEX 2017, 14 Sep. 2017

Brief history, Current Status & prospects

- 2012: TDR and Detailed Baseline Design (DBD)
- Fall 2015: High-ranking US-Japan Talk starts
- May 2016: KEK Management "Japanese Decision on ILC will be Input to the European Strategy"
- Dec. 2016: E-XFEL goes online
- 2017: Staging discussion ⇒ start @ 250 GeV to reduce cost?
- Green Light \Rightarrow International Laboratorys

ILC Key Features & Physics Goals

Key features

- Well known initial state, no QCD background, fully reconstructible channels
- Precise theoretical predictions: radiation corrections O(1%) & theoretical error O(0.1%)
- Tunable \sqrt{s} (threshold scan & flexibility) & Beam polarization (S/N enhancement)
- Globally small cross-section but highly pure samples
- Advantages: triggerless, low backgrounds, most measurement statistically limited

Very rich physics program

- Higgs sector
 - O(1%) precision of mass/width/spin & couplings
 - > Model independent measurements ($\sigma \& \sigma \times Br$)
 - \Rightarrow Probe BSM, model disentangling
- Top physics
- EW precision measurements
- Direct/indirect BSM searches

Very important role of Vertex detector

- Favour tagging (b, c, τ)
- Low momentum tracking (as lows as 200 MeV/c)
- Jet charge determination

ILC Experimental Environment

Beam structure

- 5 trains/s of ~1300/2600 bunches
- 1 bunch every 550/370 ns
- Beam-less time ~ 200 ms
- Operation strategies
 - > Full detector readout (r.o.) \Rightarrow triggerless
 - Possible r.o. during beam-less time
 - ≻ Power pulsing \Rightarrow reduced power

Beam induced bkg: Beamstrahlung

- Beam energy loss: ~1% @ 250 GeV
- Radiation level: ~100kRad \oplus 10¹¹ n_{eq}/cm² (HL-LHC: ~1GRad \oplus 10¹⁶ n_{eq}/cm²)
- Low momentum (10 100 MeV/c) real tracks!
- Main occupancy source: drives VTX r.o. speed & R_{min}
- Typical rate of ~ 6 hits/cm²/BX on innermost VTX layer
- Large systematic uncertainty
 - \Rightarrow Safety factor of at least x5 needed

Alejandro Pérez Pérez, VERTEX 2017, 14 Sep. 2017

Bunches have electric space charge ⇒ particles deflected ⇒ photons emissions ⇔ e⁺e⁻ pairs ("beamstrahlung")

ILC Detector Challenges

- Detector design driven by running conditions and physics goals
 - Strategy: use of particle flow algorithms used to an unprecedented level
- For this need an unprecedented precision detectors
 - Jet σ_{E}
 - → factor of 3 improvement on jet $\sigma_{_{E}}$ w.r.t. LHC (~200 higher calorimeter granularity)
 - Tracking and Vertexing
 - Momentum resolution factor of 10 w.r.t. LHC
 - > Track pointing to IP
 - > Low momentum tracking ($p_{T} \leq 100 \text{ MeV/c}$)
 - > Enhanced flavour (b,c, τ) tagging: short lived particles flying O(100 μ m)
 - > All this achieved with 10-20 finer pixels and ~5-10 lower Mat. Budget w.r.t. LHC

Other performances much less demanding w.r.t. LHC

- Radiation hardness
- Time resolution
- Data rate

ILC Detector Design: 2 complementary approaches

ILC Vertex Detector (VTX) Requirements

Linear e⁺e⁻ collider

- Exhibit milder running conditions than pp/LHC
 - Relaxed readout-speed & radiation tolerance
- Favours technologies focusing on resolution & material budget

VTX requirements

• Physics performances: $\sigma(d_0) < 5 \oplus 10/p\beta \sin^{3/2}\theta \mu m$

 $\Rightarrow \sigma_{_{SD}} \sim 3 \ \mu m$ (~17 μm pitch) & low material budget (~0.15% X_0/layer)

- Occupancy ⇔ readout-speed: few % occupancy (~6 hits/cm²/BX)
- Moderate radiation tolerance (/year): ~100kRad ⊕ 10¹¹ n_{en}/cm²
- Power dissipation ⇔ preferably air cooling: 600W/12W (power cycling, 3% duty cycle)
- Readout & electronics
 - Immunity to SEU and Latchup
 - Highly integrated readout μ-circuits & high data transfer rate (triggerless)
- Other parameters
 - Cost, fabrication reliability and flexibility
 - > Mechanical integration: low mass, rigidity and heat conductive
 - Alignment: sub-micron level

Reach the specifications all together is the real challenge

SiD: VTX and Silicon Strip tracker

• <u>SiD</u> •

Silicon Strip Tracker

- All silicon tracker
- Use silicon micro-strips and double metal layers
- 5 barrel + 4 disks
- Gas cooled
- Material budget less than 20% X₀ in active area
- Readout KPIX ASIC bump-bonded to modules

VTX

- 5 barrel pixel + 7 disks (4 close and 3 far away)
- Baseline: pixel pitch 20×20 μm²
- Technology options
 - > Monolithic CMOS chip \Rightarrow Chronopix
 - > 3D vertically integrated silicon

ILD: VTX and Silicon Tracking System

Silicon Inner & External Trackers (SIT & SET)

- Si-strip detectors: 200 μ m thick, 50 μ m pitch, 10×10 cm² sensors, edgeless, 7 μ m σ_{sp}
- Improves resolution and linking VTX-Tracker-Ecal
- Fwd Tracker (FTD): 7 disks (2 pixel & 5 Si-strips)
 - 2 closest layers: small pixels 20×20 μ m² (σ_{sp} ~4 um) \Rightarrow DEPFET
 - 5 farthermost layers: strips similar to SIT/SET
- Barrel (VTX): 3 × double-sided-ladders
 - Inner layers (< 300 cm²): priority r.o. speed & σ_{sp} 16×16/80 µm² pixels & binary output: $t_{r.o.}$ ~50/8 µs & σ_{sp} ~3/5 µm
 - Outer layers (~3000 cm²): priority to power consumption & σ_{sp} images 35×35 μ m² pixels & 3-4 bit charge encoding: $t_{r.o.}$ ~100 μ s & σ_{sp} ~4 μ m $\prod_{n=1}^{\infty}$
 - R&D on several technologies ⇒ **DEPFET**, **FPCCD**, **SOI**, **CMOS**

Targeted Tracking System Material Budget

ILC Tracking system expected performances: I.P. resolution

IFCA (Santander) CNM

Solving the fill factor of strips LGAD

- No segmentation of multiplication layer
- Segmentation of ohmic contact \Rightarrow collect holes
- Detector could be very thin $(35 40 \,\mu\text{m})$
 - Small material budget
 - Good timing (few 10s ps for hole collection)

I-LGAD

Interesting application for ILD SIT tracker layers

First ever multi-channel tracking module based on Strip I-LGAD & LGAD

Alejandro Pérez Pérez, VI

Gain \equiv MPV I-LGAD / MPV reference PIN

Reducing Material Budget: Technical developments

Power consumption & Cooling

- Baseline: air cooling (few 10s of W)
 - Goal: ≤ 20 mW/cm²
- Requirements: technology dependent
 - Baseline: air flow (few m/s) + power pulsing
 - > DEPFET: FEE µ-channel cooling
 - > FPCCD: requires $-40^{\circ}C \Rightarrow (2 \text{ phase-CO}_{2})$
 - CMOS: asynch. r.o.: maybe no power pulsing

Sensor integration in ultra-light devices

- Beam-pipe: Be 500 μ m (0.14% X₀)
- 50 μm thick sensors routinely produced e.g. CMOS, DEPFET, ...
- Today: $0.2 0.4 \% X_0$ /layer in acceptance
- 0.15% X_n/layer seems reachable!

See J. Dingfelder Talk

Alejandro Pérez Pérez, VERTEX 2017, 14 Sep. 2017

See P. Petagna (Overview), A. Mapelli

inlet

outlet

Handle wafer

DRIE etching

See P. Petagna (Overview), A. Mapelli (NA62), O. Aguilar (LHCb) Talks

Belle-II DEPFET module: 0.21 % X_n

14

Vertex detector Technologies

ILD & SiD share Vertex Detector R&D

- Several mature technos. considered needing more R&D to meet requirements
- Safety margin uncertainty mainly from beam bkg knowledge
 - Large systematics and depends on beam-energy and IR design

No technology yet chosen

- Still have some time and all technologies still evolving
- Selection based on physics benchmarks performances
- Different geometries are being considered
 - > 3 x double-sided-ladders vs 5 single-sided?
 - Long or short barrel + disks?
- Different r.o. strategies
- Performances obtained with technology/geometry specific tracking/vertexing algorithms

Several options still on the table

VTX Readout Strategies

Chronopix

Design features

- Monolithic CMOS pixel detector
- In-pixel
 - Pre-amp + Discri with offset compensator
 - Time-stamping (bunch-tagging) up to 2 hits (14-bits)
- Sparsified r.o. between trains

R&D efforts

- 3 sets of small prototypes since 2008
- Chronopix 3: 25x25 μm² in TSMC 90 nm CMOS (2015)
- Set of prototypes showed
 - > Time-steping better than 300 ns proven
 - Sparsified readout architecture works
 - Power pulsing tested
 - Noise & cross-talk controlled
- Next steps
 - No show stoppers for full-size prototype
 - Still several optimizations of design

Alejandro Pérez Pérez, VERTEX 2017, 14 Sep. 2017

Oregon University Yale University

FPCCD

Studies with small prototypes with 6x6 μm² pixel

- Small prototypes 6x6 mm² thinned to 50 μm
- 4 channels with diff. register size: 6, 12, 18, 24 μ m
- Prototype sufficiently radiation hard

Large prototype

- Real size sensor 12.3 x 62.4 mm² for double-sided ladder
- 125 x 13000 pixels with 16 r.o. nodes
- Readout ASIC prototype (TSMC 250 nm CMOS)
 - Between train r.o.
 - > Amp+LPF+CDS+ADC+LVDS driver
 - > 10 MHz r.o., 6 e⁻ noise, 5.6 mW/channel
- FPCCD + r.o. chip: 44 e⁻ noise
- Mechanics: Carbon fibre and flex
- Operates @ -40°C: CO₂ cooling

Next steps

- Beam-tests, ladders assembly + cooling
- Improve readout speed

Alejandro Pérez Pérez, VERTEX 2017, 14 Sep. 2017

Tohoku University, KEK, Shinshu University, JAXA

Development driven by Belle-II PXD

- Ladder assembly qualified
- PXD modules currently in 1st pre-production batch
- SuperKEKB commissioning phase 2 (low lumi)
 - One sector of PXD will be installed
 - Machine bkg measurements & system validation

DEPFET

Thin DEPFET for ILC

- ILC prototypes manufactured
- 0.15% X₀ seems achievable: including switcher chips
- Resolution studies in simulation and Beam-test
- µ-channel cooling under development
- Interest in pixelated FTD, and maybe VTX
- Next Steps: r.o. speed and integration

FET gate

p+ source

DEPFET

clear gate

P+ drair

deep n-doping 'internal gate'

n+ clear

SOFIST: SOI sensor for Fine measurement of Space and Time

- Goal: fine pixels (~20x20 μm²) & bunch time-stamping
- SOFIST v1: delivered Dec. 2015
 - Chip size 2.9x2.9 mm² (pixel 20x20 μm²)
 - Pre-amp (CSA) + Analog memories (2 hits)
 - Column ADC (8 bits)
 - FZ n-type (single SOI)
 - TB @ Fermilab: $\sigma_{so} \sim 1.5 \,\mu m$

SOFIST v2: delivered Jan. 2017

- Chip size 4.5x4.5 mm² (pixel 25x25 μm²)
- Pre-amp + Comp + Shift register + Analog memories (2 hits)
- Column ADC (8 bits) + Zero-suppression
- Cz p-type (double SOI)
- Under evaluation
- SOFIST v3 & 4: under design, submission June 2017
 - Chip size 6x6 & 4.5x4.5 mm² (pixel 30x30 & 20x20 μm²)
 - Pre-amp + Comp + Shift register + Analog memories (3 hits)
 - Column ADC (8 bits) + Zero-suppression
 - FZ p-type (double SOI)

Alejandro Pérez Pérez, VERTEX 2017, 14 Sep. 2017

See K. Hara Talk for SOI recent developments

Osaka University, Tsukuba University, Tohoku University, KEK

CMOS Pixel Sensors (CPS)

CPS for ILC

- Exploit potential of available CMOS technologies
- R&D performed in synergy with several applications
 - > EUDET-BT, STAR, ALICE & CBM
- CPS is unique technology being simultaneously
 - > Granular, thin, integrating full FEE, industrial & cheap
- Address trade-off between spatial resolution & r.o. speed

Current developments

- Driven by ALICE-ITS and CBM-MVD
 - > Tower-Jazz 180 nm CMOS process
 - > In pixel pre-amp + discrim. & asynchronous r.o.
- Focus on increased r.o. speed: few $\mu s \Rightarrow$ bunch tagging
 - To comply with beam bkg uncertainties
- Keep low power consumption
 - Potential to avoid power pulsing
- Radiation tolerance >> needed for ILC
- Potential use for trackers (large surfaces)
 - Large pixels detection efficiency demonstrated

Alejandro Pérez Pérez, VERTEX 2017, 14 Sep. 2017

START-PXL

See G. Contin Talk

See A. Alici Talk

Summary and Outlook

ILC is a Mature Project

- Accelerator TDR
- ILD & SiD: feasibility of detectors demonstrated in DBD document in 2012

Vertex and Tracking Detectors

- Many options still available: technologies, r.o. architecture, geometries, ...
- Several experiments already approaching ILC specifications: ALICE, CBM, Belle-II, ...
- R&D still very active
 - Detector performances
 - > Robustness w.r.t beam background & \sqrt{s} program
 - Careful mechanical integration studies
 - > Tracking & Vertexing performances

What's next?

- Scientific environment & political opportunities for Japan ⇔ rest-of-the-world
- Coming years
 - Refine requirements & prioritize physics goals
 - On the road for ILD & SiD TDR

Physics @ ILC: Key Features

108

 10^{6}

 10^{2}

10⁰

 10^{-2}

 10^{-4}

10-6

Number of events

for 500fb⁻¹

500x10³

 $5x10^{3}$

50

1000

ents/sec for L = 10

10⁹ **Clean Environment** 10^{7} LHC Tevatron pp/pp No QCD background \Rightarrow no pile up 10⁵ Well known initial state 10^{3} $\sigma_{iot}(E_T^{jet} > \sqrt{s/20})$ Fully reconstructible channels (even fully hadronic) $(ub)_{10_1}$ **Precise Theoretical Predictions** Radiative corrections O(1%) 10^{-3} Theoretical uncertainties O(0.1%) > √s/4 10^{-5} = 150 GeV Tunable $\sqrt{s} \Rightarrow$ Threshold scans & flexibility $\sigma_{Higgs}(M_H =$ 10-7 0.1 1 10 Beam polarization \Rightarrow S/N enhancement √s (TeV) **Cross sections** e⁺e⁻ $\Sigma q\bar{q}$ Globally small ($\sigma_{_{7H}} \sim 100 \text{ fb}$) but ... 10⁶ ZZ Higgs production @ LHC: 1/10¹⁰ events lcos0l<0.8 W*W lcos0l<0.8 σ(fb) tī 175GeV Higgs production @ ILC: $1/10^2$ events **Advantages** Triggerless Zh 120Ge 1 Low backgrounds HA 2200ev 400GeV H+H-Most measurements statistically limited H+H 410Ge 10^{-2} 0 200 400 600 800 Alejandro Pérez Pérez, VERTEX 2017, 14 Sep. 2017 √s (GeV)

Physics @ ILC: Goals

	Energy	Reaction	Physics Goal
	$91 \mathrm{GeV}$	$e^+e^- \rightarrow Z$	ultra-precision electroweak
	$160 { m GeV}$	$e^+e^- \rightarrow WW$	ultra-precision W mass
Very rich physics program	250 GeV	$e^+e^- \rightarrow Zh$	precision Higgs couplings
- · · ·	350-400 GeV	$e^+e^- \rightarrow t\overline{t}$	top quark mass and couplings
 Top physics 		$e^+e^- \rightarrow WW$	precision W couplings
EW procision mossurements		$e^+e^- \rightarrow \nu \overline{\nu} h$	precision Higgs couplings
	500 GeV	$e^+e^- \rightarrow f\overline{f}$	precision search for Z'
 Direct/indirect BSM searches 		$e^+e^- \rightarrow t\overline{t}h$	Higgs coupling to top
		$e^+e^- \rightarrow Zhh$	Higgs self-coupling
Higgs sector		$e^+e^- \rightarrow \tilde{\chi}\tilde{\chi}$	search for supersymmetry
		$e^+e^- \rightarrow AH, H^+H^-$	search for extended Higgs states
 O(1%) precision of Higgs mass/width/spin 	$700-1000 { m GeV}$	$e^+e^- \rightarrow \nu \overline{\nu} hh$	Higgs self-coupling
& couplings		$e^+e^- \rightarrow \nu \overline{\nu} VV$	composite Higgs sector
a coupinigo		$e^+e^- \rightarrow \nu \overline{\nu} t \overline{t}$	composite Higgs and top
 Model independent measurements 		$e^+e^- \rightarrow \tilde{t}\tilde{t}^*$	search for supersymmetry

- $\succ \text{ Access } \sigma \text{ and } \sigma \!\times\! Br$
- Probe BSM, model disentangling

Very important role of Vertex detector

- Favour tagging (b, c, τ)
- Low momentum tracking (as lows as 200 MeV/c)
- Jet charge determination

Physics @ ILC: BSM example

ILC Experimental Environment

Beam structure

- 5 trains/s of ~1300/2600 bunches
- 1 bunch every 550/370 ns
- Beam-less time ~ 200 ms
- Operation strategies
 - > Full detector readout (r.o.) \Rightarrow triggerless
 - Possible r.o. during beam-less time
 - > Power pulsing \Rightarrow reduced power

Beam induced bkg: Beamstrahlung

- Beam energy loss: ~1% @ 250 GeV
- Radiation level: ~100kRad \oplus 10¹¹ n_{eq}/cm² (HL-LHC: ~1GRad \oplus 10¹⁶ n_{eq}/cm²)
- Main source of occupancy
 - > Drives VTX r.o. speed & minimum radius
 - Physics cross section negligible (~ 1 evt/s)

Bunches have electric space charge ⇒particles deflected ⇒photons emissions ⇔ e⁺e⁻ pairs ("beamstrahlung")

ILC Experimental Environment: Beam Bkg on ILD

Beam Bkg Simulation (Guinea Pig)

- e⁺e⁻ pairs production
- √s dependent rates
- ~20% rates due to back scatterers
- Stat-only error, systematics much higher

Alejandro Pérez Pérez, VERTEX 2017, 14 Sep. 2017

Sub-detector	Units	Layer	TDR_ws 500 GeV	B1b_ws 1000 GeV	-
VTX-DL	$\rm hits/cm^2/BX$	1	6.320 ± 1.763	11.774 ± 0.992	
D = 1		2	4.009 ± 1.176	7.479 ± 0.747	-
R –		3	0.250 ± 0.109	0.431 ± 0.128	
		4	0.212 ± 0.094	0.360 ± 0.108	ğ
	_	5	0.048 ± 0.031	0.091 ± 0.044	ц т
R = 6	.0 cm ——	$\blacktriangleright 6$	0.041 ± 0.026	0.082 ± 0.042	5
SIT	$\rm hits/cm^2/BX$	1	0.0009 ± 0.0013	0.0016 ± 0.0016	-γ
		2	0.0002 ± 0.0003	0.0004 ± 0.0005	<u>с</u>
FTD	$hits/cm^2/BX$	1	0.072 ± 0.024	0.145 ± 0.024	22
		2	$0.046~\pm~0.017$	0.102 ± 0.016	ပ်
		3	0.025 ± 0.009	0.070 ± 0.009	
		4	0.016 ± 0.005	0.046 ± 0.007	JU,
		5	0.011 ± 0.004	0.034 ± 0.005	Š
		6	0.007 ± 0.004	0.024 ± 0.006	ŝ
		7	0.006 ± 0.003	0.022 ± 0.006	Å
SET	hits/BX	1	0.196 ± 0.924	0.588 ± 2.406	-4
	·	2	0.239 ± 1.036	0.670 ± 2.616	ш
TPC	hits/BX	-	$216~\pm~302$	465 ± 356	-
ECAL	hits/BX	-	$444~\pm~118$	1487 ± 166	-
HCAL	hits/BX	-	18049 ± 729	54507 ± 923	-

Some features

- Low momentum (10 100 MeV/c) real tracks!
- Typical rate of ~ 6 hits/cm²/BX on innermost VTX layer
- Very sensitive to IR design
- Large systematic uncertainty
 - \Rightarrow Safety factor of at least x5 needed

The ILC Machine

- 500 GeV Linear collider
 - 31 km long
- Acceleration
 - 7400 superconducting Cavities in 850 Cryo Modules
 - Gradient 31.5 MV/m
 - 1.3 GHz RF
 - 163 MW power consumption
 - Beam parameters
 - 2x10¹⁰ particles/bunch
 - 554 ns spacing
 - L=1.8x10³⁴ cm⁻²s⁻¹
 - Polarization 80/30 (e⁻/e⁺)
 - Nanometer-scale beam spot

ILC Site – Kitakami Mountains 🔹

ILC baseline program

Integrated Luminosities [fb]

Marcel Stanitzki

SiD: vertex detector

- Layout:
 - Short barrel approach
 - Barrel: 5 silicon pixels layers
 - Forward disks
 - 4 disks at short distance
 - 3 disks at longer distance
- Technology options
 - Baseline
 - \succ pixels pitch: 20 x 20 μ m²
 - CMOS based Chronopixels
 - In pixel 12 bits time stamping
 - Read-out between trains
 - Reduce beam background
 - Allows tracking with VTX seeding
 - Requires very advanced technology (90 nm)
 - 3D vertical integrated silicon
 - Even more challenging

VERTEX 2016, La Biodola, Isola d'Elba, Italy, 25-30 september 2016

LC Vertex Detector Workshop 2017

ILD tracking system: TPC + silicon (1)

- Main system: TPC
 - 2 options: GEMs/Micromegas
- Silicon Strip detectors
 - 200 μ m thick silicon, 50 μ m pitch,
 - 10x10cm² sensors, edgeless, 7µm sp.res.
 - 4 components
 - Silicon inner Tracker (SIT)
 - Silicon External Tracker (SET)
 - End cap Tracker (ETD)
 - Forward Tracker (FTD)
 - (2 inners with pixels + 5 with strips)
 - Goals:
 - Improves resolution
 - Linking VTX-Tracker-ECal
 - Improves calibration, alignement
 - Allows time stamping
 - Challenges and R&D:
 - maintain the mat.budget small
 - push pull compatible
 - minimize power (power pulsing)

Auguste Besson

 $< 0.25 X_0$ for readout endcaps in z $\simeq 1.2 \times 10^6 / 1000$ per endcap Number of pads/timebuckets $\simeq 1 \,\mathrm{mm} \times 4\text{--}10 \,\mathrm{mm} / \simeq 200$ Pad pitch/no.padrows $< 100 \mu m$ (avg for straight-radial tracks) σ_{point} in $r\phi$ σ_{point} in rz $\simeq 0.4 - 1.4 \text{ mm}$ (for zero – full drift) 2-hit resolution in rø $\simeq 2 \text{ mm}$ (for straight-radial tracks) 2-hit resolution in rz $\simeq 6 \text{ mm}$ (for straight-radial tracks) dE/dx resolution $\simeq 5\%$ Performance > 97% efficiency for TPC only (p_t > 1 GeV/c) > 99% all tracking (p_t > 1 GeV/c) Background robustness Full efficiency with 1% occupancy, Background safety factor Chamber prepared for 10-20% occupancy

(at the linear collider start-up, for example)

"The momentum resolution for the combined central tracker is $\delta(1/p_t) \simeq 2 \times$ $10^{-5}/{\rm GeV/c}$

ILD tracking system: TPC + silicon (2)

1

J

ILD: Vertex detector

- Layout (DBD geometry):
 - Long Barrel approach
 - Radius: ~15 mm 60mm
 - 3 x double sided ladders
 - > Optimize material budget / alignment.
 - Stand alone tracking improvment
 - Background tagging capabilities
 - Other option: 5 single sided layers
 - Layers 1 & 2:
 - Priority to read-out speed & spatial resolution
 - $\succ\,$ Small pixels: 17 x 17 / 33 μm^2
 - Binary charge encoding
 - $\succ~$ Read-out time $\sim~50$ / 8 μs
 - σ_{sp} ~ 3 / 5 μm

layers 3 – 6

- Optmized for power comsumption
- Large pixels (25/35 x 35 μm²)
- 3-4 bits charge encoding
- Read-out time ~ 60 µs

σ_{sp} ~ 4 μm

	<i>R</i> (mm)	$ z \pmod{2}$	$ \cos \theta $	σ (μ m)	Readout time (μ s)
Layer 1	16	62.5	0.97	2.8	50
Layer 2	18	62.5	0.96	6	10
Layer 3	37	125	0.96	4	100
Layer 4	39	125	0.95	4	100
Layer 5	58	125	0.91	4	100
Layer 6	60	125	0.9	4	100

CMOS Pixel Sensors (CPS): Main features

Assets of CPS

- Signal processing integrated on sensor substrate
 ⇒ downstream electronics & syst. Integration
- Standard fabrication process
 ⇒ low cost & easy prototyping, many vendors, …
- High granularity \Rightarrow excellent spatial resolution (O(μ m))
- Signal generated in thin (10-40 μ m) epi-layer \Rightarrow usual thinning up to 50 μ m total thickness

- Application domain widens continuously (existing/foreseen/potential)
 - Heavy-ion collisions
 - STAR-PXL, ALICE-ITS, CBM-MVD, NA61...
 - e⁺e⁻ collisions
 - > BES-III, ILC, Belle II (BEAST II)
 - Non-collider experiments
 - FIRST, NA63, Mu2e, PANDA, …
 - High-precision beam-telescopes (adapted to medium/low energy e⁺ beams)
 - Few μm resolution @ DUT achievable with EUDET-BT (DESY), BTF-BT (Frascati)
- Alejandro Pérez Pérez, VERTEX 2017, 14 Sep. 2017

CPS State-of-the-Art in operation: STAR-PXL detector

STAR-PXL @ RHIC 1st CPS @ a collider experiment !

- Rolling shutter r.o. $(t_{ro} \leq 200 \ \mu s)$
- T_{op} = 30 35°C
- $\epsilon_{det} \gtrsim 99.9\% \ \sigma_{sp} \gtrsim 3.5 \ \mu m \ \& \ f_{rate} \lesssim 10^{-5}$
- Rad. hard up to $150kRad \oplus 3 \times 10^{12}n_{eq}/cm^2$

STAR-PXL HALF-BARREL (180M pixels)

- 2 layers @ r = 2.8, 8 cm
- 20 ladders (10 sensors) (0.37% X₀)

Several Physics-runs

- 1st /2nd run in 2014 & 2015
- Preparation for 3rd run (Jan. 2016)
- $\sigma_{ip}(p_T)$ matching requirements ~40 µm @ 600 MeV/c for π^{\pm}/K^{\pm}

Observation of D⁰ production

- **STAR:** peak significance = 18
- ALICE: peak significance = 5

Alejandro Pérez Pérez, VERTEX 2017, 14 Sep. 2017

CPS performances: r.o. speed & rad. hardness

- 15 years of experience of PICSEL group in developing CPS
- Strong collaboration with ADMOS group at Frankfurt

r.o. speed evolution

Two orders of magnitude
 improvement in 15 years of research

Radiation tolerance

- Significant improvement with time
- Validation up to $10MRad \oplus 10^{14}n_{eq}/cm^2$
- Adequacy to ALICE-ITS and CBM applications

CPS performances: Spatial Resolution (σ_{sn})

Several parameters govern σ_{sp}

- Pixel pitch
- Epi-layer: thickness & ρ
- Sensing node: geometry & electrical properties
- Signal-encoding resolution: Nb of bits
- σ_{sp} function of:
 pitch ⊕ SNR ⊕ charge-sharing ⊕ ADCu ⊕ ...
- Pixel-pitch impact (analogue output)
 - Pitch = 10 (40) μ m $\Rightarrow \sigma_{so} \sim 1 \mu$ m ($\leq 3 \mu$ m)
 - Nearly linear improvement in σ_{sp} vs pixel pitch

- $\sigma_{sp}^{digi} = pitch/(12)^{1/2}$
 - \Rightarrow e.g. σ_{sp}^{digi} ~ 5.7 µm for 20 µm pitch

pitch (microns)

Nb of bits123-41Datameasuredreprocessedmeasured σ_{sp} $\lesssim 1.5 \mu m$ $\lesssim 2 \mu m$ $\lesssim 3.5 \mu m$

ALICE-ITS: Readout chain components

Typical readout components

- **AMP:** in-pixel low noise pre-amplifier
- Filter: in-pixel filter
- **ADC** (1-bit = discriminator): may be implemented at end-of-column or pixel level
- Zero suppression (SUZE): only hit pixel info is retained and transferred
 - > Implemented at sensor periphery (usual) or inside pixel array
- Data transmission: O(Gbps) link implemented at sensor periphery

r.o. alternatives

- Rolling shutter (synchronous): || column r.o. reading N-lines at the time (usually N = 1-2)
- data-driven (asynchronous): only hit pixels are output upon request (priority encoding)
- Rolling shutter: best approach for twin-well process
 - Trade-off between performance, design complexity, pixel dimensions, power, ...
 e.g.: Mimosa-26 (EUDET-BT), Mimosa-28 (STAR-PXL)

Next challenge: ALICE-ITS upgrade

Upgraded ITS entirely based on CPS

- Present detector: 2xHPD/2xDrift-Si/2xSi-strips
- Future detector: 7-layers with CPS (25-30k chips)
 - \Rightarrow 1st large tracker (~ 10 m²) using CPS
- ITS-TDR approved on March 2014 (Pub. In J.Phys. G41 (2014) 087002)

New ALICE-ITS requirements

	σ_{sp}	t _{r.o.}	Dose	Fluency	T_{op}	Power	Active area
STAR-PXL	$<$ 4 μm	$<$ 200 μs	150 kRad	$3\cdot 10^{12}~{ m n}_{eq}/{ m cm}^2$	30-35°C	160 mW/cm^2	0.15 m^2
ITS-in	\lesssim 5 μm	\lesssim 30 μs	2.7 MRad	1.7 \cdot 10 13 n _{eq} /cm 2	30°C	$<$ 300 mW/cm 2	$0.17 \mathrm{~m}^2$
ITS-out	\lesssim 10 μm	\lesssim 30 μs	100 kRad	$1{\cdot}10^{12}~{ m n}_{eq}/{ m cm}^2$	30°C	$<$ 100 mW/cm 2	\sim 10 m 2

 Different requirements on inner & outer layers calls for different chips designs!

\Rightarrow 0.35 μm CMOS process (STAR-PXL) marginally suited to this r.o. speed & rad. hardness

CMOS Process Transition: STAR-PXL \rightarrow ALICE-ITS

- PMOS in pixel array not allowed
 ⇒ parasitic q-collection of additional N-well
- Limits choice of readout architecture strategy
- Already demonstrated excellent performances
 - > **STAR-PXL:** Mi-28 (AMS 0.35 μ m process) $\Rightarrow \epsilon_{det} > 99.5\%, \sigma_{sp} < 4\mu m$
 - > 1st CPS detector @ collider experiment

- N-well of PMOS transistors shielded by deep P-well \Rightarrow both types of transistors can be used
- Widens choice of readout architecture strategies
 - New ALICE-ITS: 2 sensors R&D in || using TowerJazz CIS 0.18 um process (quadru. well)
 - → Synchronous Readout R&D: proven architecture ⇒ safety
 - Asynchronous Readout R&D: challenging

ALICE-ITS: Two Architectures for the pixel chip

PXL in STAR Inner Detector Upgrades

Technology Perspectives for Performance Improvements

• HV/HR-CMOS sensors: $d_{dep} \sim 0.3 \sqrt{\rho_{sub} \times U_{bias}}$

- Extend sensitive volume & improved q-collection
 - \Rightarrow Faster signal & stronger rad. tolerance
- Not bound to CMOS processes using epi-layers
 - Easier access to VDSM (< 100 nm) process
 - Higher in-pixel µ-circuitry density
- Unanswered questions
 - > Minimal pixel dimensions (σ_{sp}) ?
 - > Uniformity over large sensitive area & production yield?

2-tiers chips

- Signal sensing (front-end) & processing (r.o.) parts distributed over two interconnected tiers (AC coupling)
- Smart sensor \Rightarrow 1 r.o. pixel addressing N pixel-front-ends
 - \Rightarrow Reduce density of interconnections
- Can combine 2 diff. CMOS processes: front-end/r.o.
- Benefits: small pixels ⇒ resolution, speed, datacompression and robustness
- Challenges: interconnection technology (reliability & cost)

Ivan Peric: CPIX14, Bonn, 2014

2

Sensor technologies

Technologies proposed so far

DEPFET Active Pixels

DEPFET all-silicon module for Belle II

DCDB (Drain Current Digitizer)

Analog front-end

Amplification and digitization of DEPFET signals.

> 256 input channels 8-bit ADC per channel 92 ns sampling time UMC 180 nm Rad hard design

Key to low mass vertex detectors

 \rightarrow MCMs w/ highest possible integration!

- → Thin sensor area

SwitcherB - Row Control

AMS/IBM HVCMOS 180 nm Size $3.6 \times 1.5 \text{ mm}^2$ Gate and Clear signal 32x2 channels Fast HV ramp for Clear Rad. Hard proved (36 Mrad)

DHP (Data Handling Processor) First data compression

TSMC 65 nm Size 4.0 × 3.2 mm² Stores raw data and pedestals Common mode and pedestal correction Data reduction (zero suppression) Timing and trigger control Rad. Hard proved (100 Mrad)

Full Size Modules

- 768x250 DEPFET Pixels
- 50x75 μm² pixel pitch
- 75 μm thickness

- 1. Power up. Voltage sanity check
- 2. ASIC sanity check. JTAG boundary scan
- 3. Digital test pattern, delay scans
- 4. Switcher control signals
- 5. Raw data readout
- 6. Pedestal distribution, noise
- 7. Response on radioactive sources

CMOS Pixel Sensors for the ILD-VXD (2/2)

• From the STAR-PXL to the ILC-VXD :

Detector	σ_{sp}	t_{int}	Dose $(30^{\circ}C)$	Fluence $(30^{\circ}C)$
STAR-PXL	\gtrsim 3.5 μm	190 μs	150 kRad	$3 \cdot 10^{12} n_{eq}/\mathrm{cm}^2$
ILD-VXD/In	$<$ 3 μm	50/10 μs	< 100 kRad	\lesssim 10 $^{11} \mathrm{n}_{eq}/\mathrm{cm}^2$
ILD-VXD/Out	\lesssim 4 μm	100 μs	< 10 kRad	\lesssim 10 10 n $_{eq}$ /cm 2

- Final "500 GeV" CPS prototypes : fab. in Winter 2011/12 (0.35 µm process for economic reasons)
 - ★ MIMOSA-30: inner layer prototype with 2-sided read-out \hookrightarrow one side : 256 pixels (16×16 μm^2) other side : 64 pixels (16×64 μm^2)
 - * MIMOSA-31: outer layer prototype \hookrightarrow 48 col. of 64 pixels (35×35 μm^2) ended with 4-bit ADC

 \triangleright \triangleright \triangleright

Potential of MIMOSIS

- Extension of MIMOSIS to an ILC vertex detector
 - Reoptimise trade-off between requirements (relax rad. tolerance & hit rate capability)
 - Shrink pixel dimensions to minimum
 - Reshuffle read-out structure
 - Translate to smaller feature size: TowerJazz 110/180 nm, 150 or 130 nm technologies
- Sensor target performances:
 - Spatial resolution \lesssim 4 μm
 - Time resolution \sim 2–4 μs
 - Non-sensitive side-band width reduced $to{\sim}$ 1 mm
- MIMOSIS prototyping (1 MPW, 3 ER until 2020) allows for ILC prototyping

Sensor Integration in Ultra-Light devices

- Plume 02 prototype: 6 ladders for 2016
 - Reduced material budget: $\rightarrow 0.35/0.42 \% X_{0}$ (Al/Cu flex PCB)

Plume 02 fully functional prototype

Application outside ILC

-10

10

track-hit position (µm)

15

20

-15

- Beam-bkg measurement @ Belle II
- 2 Plume 02 ladders will be installed inside Belle II inner volume in 2017
- FOOT

Design concepts: PLUME

PLUME initial choices

- Double-sided
- Thinned ensors (50 µm)
 - Start with a CPS → might change if other options available
 - MIMOSA-26: single point resolution 3 µm, integration time 115 µs
- Spacer
 - Silicon Carbide foam, 2 mm thickness, few % density
- Air cooling
 - Sensor to sit on top
- Sensitive length 125 mm → 6 MIMOSA-26 per side
- Connexions with wire bonding

Design Concepts: assembly

Ladder assembly jigs

Step 1

- Aligning & gluing sensors to FPCs
- <u>Automatic</u> placement machine
- Step 2
 - Wire bonding on individual FPCs

⇒ 2 Modules

<u>Step 3</u>

1 Ladder

- Gluing 2 modules simultaneously on both sides of a SiC foam
- <u>Manually</u> with a dedicated jigs

Outputs of PLUME-2

PLUME ladders - LC VTX workshop - 1-3 May 2017

PLUME outside ILC

- Beam-induced background @ SuperKEKB
 - BEAST II will measure up to 1x10³⁴ cm²/s⁻¹
 - dedicated setup PRIOR the final Belle II full vertex detector
 - Feb-Jun 2018 = data taking
 - 2 PLUME-2 ladders at various radius and angles
 - Assess hit rate online
 - Exploit 2-sided info to recognize bkgrnd types

Measures nuclear fragmentation of interest for <u>hadrontherapy</u>

11111

- 2017: final design, 2018: final approval, 2020: data taking
- Need tracker for low momentum (<300 MeV) fragments
 - Requirement $\sigma_p/p \sim 3\%$
- Tracker in 2 parts
 - 1st station = individual sensors
 - 2nd station = 8x8 cm²
 = 4 new PLUME-type ladders (exploit MIMOSA-28)
 - Design with LNF (E. Spiriti)

Low-E from side walls

1111

Permanent magnets

High-E from IP

ILC Tracking system expected performances: p_{τ} resolution

Results from full simulation single muon particle gun

- Empirical parametrization
 σ(1/p_⊥) a ⊕ b/p_⊥ sinθ GeV⁻¹
- SiD

≻ a =
$$(2-4) \times 10^{-5}$$
, b = $(2-5) \times 10^{-3}$

- > Better @ high p_{T}
- Robustness in high density track environment
- ILD
 - > a = ~2×10⁻⁵, b ~ 1×10⁻³
 - Better @ low p_T
 - dE/dx capabilities (TPC)

ILC Tracking system expected performances: Flavour tagging

- ILD example
- Full simulation
- Multi-variable tagging algorithm (BDT)
 - LCFIplus
- Continuous improvements

VERTEX 2016, La Biodola, Isola d'Elba, Italy, 25-30 september 2016

Auguste Besson

Alejandro Pérez Pérez, VERTEX 2017, 14 Sep. 2017

22

I-LGAD: Test beam results

(Room temp. 400 Volts)

(Room temp. 200 Volts)

