Tracking, Vertexing and data handling strategy for the LHCb upgrade

Paul Seyfert on behalf of the I HCb collaboration

CERN

VERTEX 2017

LHCb-DP-2014-002

- Fully equipped forward detector at the LHC
- Approaching 400 papers
- exceeding our own expectations:
 - online calibration and alignment
 - j.nima.2016.06.050
 - exceeding design pile-up

scope II

Туре	Observable	Current precision	LHCb 2018 (8 fb ⁻¹)	Upgrade (50 fb ⁻¹)	Theory uncertainty
B_s^0 mixing	$2\beta_s(B^0_s \to J/\psi\phi)$	0.10	0.025	0.008	~0.003
	$2\beta_s(B^0_s\to J/\psif_0(980))$	0.17	0.045	0.014	~ 0.01
Higgs penguins	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$	1.5×10^{-9}	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
Gluonic penguins	$2\beta_s^{\rm eff}(B_s^0 \to \phi \phi)$	-	0.17	0.03	0.02
Unitarity triangle angles	$\gamma(B\to D^{(*)}K^{(*)})$	$\sim 10-12^{\circ}$	4°	0.9°	negligible
	$\gamma(B_s^0 \to D_s K)$	-	11°	2.0°	negligible
	$\beta(B^0 \rightarrow J/\psi K_{\rm S}^0)$	0.8°	0.6°	0.2°	negligible

Eur. Phys. Journal C (2013) 73:2373

- By 2018 important analyses will still be statistically limited
- Theoretical uncertainty smaller than experimental
- $\rightarrow\,$ Significantly more statistics needed
- $\Rightarrow \text{ Go to higher luminosity} \\ (\mathcal{L} = 2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1} \Rightarrow \nu \sim 7.6)$

LHCb-PUB-2014-027

Upgrade of the tracking system

- Vertex pixel detector see talk by Edgar Lemos Cid
 silicon strip
 - detector see talk by Marco Petruzzo
- scintilating fiber tracker

σ_z (vertex)

 $\begin{array}{c|c} < 90 \ \mu\text{m} \\ (\text{more than 20 tracks}) \\ < 50 \ \mu\text{m} \\ (\text{more than 50 tracks}) \end{array} \xrightarrow{\sigma_t (\text{decay})} \sigma_p/p \\ < 45 \ \text{fs} \\ < 0.5 \ \% \\ \end{array}$

removal of hardware trigger I

what doesn't work

- increased luminosity
- → events passing hardware trigger
- \rightarrow saturating bandwidth
- \rightarrow tighten thresholds
- \rightarrow loss in efficiency
- ⇒ no increase in statistics for analyses (depending on the decay channel)

removal of hardware trigger II

- backgrounds from real physics events
- cannot distinguish signal from background w/o RICH PID
- \Rightarrow even selection in software

Paul Seyfert (CERN)

Luxury problem: MHz signals

- Selecting and storing full events could work for rare signal
- When dealing with "millions" of good signal events, rejecting background isn't enough to stay within processing bandwidths

Luxury problem: MHz signals

The TURBO approach

- once a decay is reconstructed (mass, decay time, Dalitz plot) no need to access raw data for analysts
- once a decay is reconstructed in the trigger no need to re-reconstruct offline
- (unaffordable to study raw data for millions of events anyway)

LHCb upgrade

8 / 18

Luxury problem: MHz signals

The TURBO approach

- once a decay is reconstructed (mass, decay time, Dalitz plot) cannot afford to store all raw data offline
- once a decay is reconstructed in the trigger cannot afford to re-reconstruct all data offline
- Finite budget for offline computing resources

Paul Seyfert (CERN)

LHCb upgrade

store what you need

10.1016/j.cpc.2016.07.022

per trigger line storage definition

- only decay and nothing else
- decay and selected reconstructed objects
- all reconstructed objects (no raw data)
- full raw event

TURBO triggers must be a default for many analyses

- In a perfect world we could store and process all selected events → we will face offline storage limits
- wide Physics program requires compromise
- limit sensitivity loss in a fair share

Genetic algorithm approach

- Minimise the χ^2 by varying the MVA response for each decay
 - w_i channel weight (= 1.0 here)
 - ε_i channel efficiency

• ε_i^{\max} maximum channel efficiency when given the full output BW

$$\chi^2 = \sum_{i}^{\text{channels}} \omega_i \times \left(1 - \frac{\varepsilon_i}{\varepsilon_i^{\text{max}}}\right)^2$$

- if sum of all channels exceeds total bandwidth
 - \rightarrow assume random dropping of events
- weight to reduce impact of calibration channels (different order of magnitude in branching fraction)

LHCb-PUB-2017-006 Paul Seyfert (CERN)

Bandwidth division II

going from maximal bandwidth to restricted bandwidth

- only small efficiency decrease
- "90% of the data holds 95% of the statistical power"
- different persistency tested, too:

 $D^0 \rightarrow K_S \pi \pi$ as Turbo++

 \Rightarrow more restricted total rate

"Moore doesn't obey Moore's law"

- theoretical computing power of CPUs increases (per second, per Watt, per CHF)
- observed computed trigger decisions does not follow that increase

reasons from a CPU's point of view I/II

modern vector units process 2, 4, or 8 inputs at a time
→ our software often didn't use these
→ 7/8 of the silicon unused!

"Moore doesn't obey Moore's law"

- theoretical computing power of CPUs increases (per second, per Watt, per CHF)
- observed computed trigger decisions does not follow that increase

reasons from a CPU's point of view II/II

- software not parallelised (just start multiple processes on a multicore machine)
 - \rightsquigarrow processes compete for memory
 - \rightsquigarrow even multiple instances of the same data (detector geometry)
 - \rightarrow CPU waits for data instead of computing

tracking sequence

fast sequence 6.0 ms/evt @ 30 MHz

VELO tracking 2.0 ms/evt VELO-UT tracking 0.5 ms/evt forward tracking 2.3 ms/evt PV finding 1.1 ms/evt (present HLT1: 35 ms)

- similar to current software trigger
- single track and two track selections for displaced objects ("easy" combinatorics, limited reconstruction)

tracking sequence

full sequence aim $\sim 20 \times$ slower

1/30 rate (1 *MHz*)

Kalman fit large contributor (present HLT2: 650 ms)

- similar to current software trigger
- single track and two track selections for displaced objects ("easy" combinatorics, limited reconstruction)
- reconstruct remaining tracks in the "full stage"
- also reconstruct decay products of strange decays outside the VELO 13 / 18

Paul Seyfert (CERN)

LHCb upgrade

15th September 2017

- track fit one of the big CPU time consumers
- written for sequential adding of hits
- but different tracks can be fitted independent of each other (thread parallelisable)
- matrix operations are always the same (vectorisable)

Kalman filter track fit

grain of salt

- only speeds up the matrix algebra
- material lookup remains
- now requires back-and-forth conversion of memory layout
- \Rightarrow to be consequent need to adapt underlying event model

LHCb upgrade

• avoid first-principles math for every track \rightsquigarrow parametrisations can be equally accurate reduce complicated *B* field propagation and material lookup to O(20) parameters

example parametrised extrapolation through the magnet

• avoid first-principles math for every track \rightsquigarrow parametrisations can be equally accurate reduce complicated *B* field propagation and material lookup to $\mathcal{O}(20)$ parameters

avoid first-principles math for every track
→ parametrisations can be equally accurate
reduce complicated *B* field propagation and material lookup to
O(20) parameters

- resolution close to reference
- potentially use full fit for tracks with large $\sqrt{t_x^2 + t_v^2}$
- find alternative parametrisations
- \Rightarrow fast track fit must not deteriorate resolution

fake track identification

fake tracks a big contribution to computing budget in run I

 \blacksquare identification of fakes w/ neural network after track fit more powerful than track fit χ^2 alone

upgrade fake rejection:

fake track identification

- fake tracks a big contribution to computing budget in run I
- \blacksquare identification of fakes w/ neural network after track fit more powerful than track fit χ^2 alone
- As more and more ML goes into earlier stages of the track reconstruction, there are less fakes to remove after the track fit
- $\rightarrow\,$ looking forward for this to become less important

upgrade fake rejection:

multi threaded processing framework

- introduce harder framework constrains (functional programming)
- observe near optimal speedup when increasing number of threads
- observe little memory increase when increasing number of threads

- LHCb physics program relies on software trigger at 30 MHz
- Need to face tight constraints from offline storage and processing as well as online processing power
 - $\rightarrow\,$ reconstruction right out of the trigger
 - $\rightarrow~$ "per analysis" storage
- Fast tracking *without performance loss* crucial for LHCb upgrade
- Needs reconstruction software close to computer hardware to optimally use it

BACKUP

https://gitlab.cern.ch/pseyfert/Vertex2017

Straight line prediction for y

First order correction in q/p for x (effect is small) LHCb-TALK-2017-047

Empirical parametrization depending on q/p and y for prediction $t'_x = t_x + par_1 \frac{q}{p} + par_2 \left(\frac{q}{p}\right)^3 + par_3 y^2 \frac{q}{p} \left|\frac{q}{p}\right|$

3/6

- Use primary (x,y=0 at z=0) tracks as "reference":
 - For them the extrapolation is a expansion in $\frac{q}{p}$ (4th order)
 - Using coefficients that are tabulated as a function of x, y
- Perform a expansion in the deviation from these tracks $(\delta_{t_x} \text{ and } \delta_{t_y})$ for the correction of the coefficients of the $\frac{q}{\rho}$ expansion

4/6

Vertex resolution

LHCb-PUB-2017-005

Upgrade of the tracking system

- Vertex pixel detector see talk by Edgar Lemos Cid
- silicon strip detector see talk by Marco Petruzzo
- scintilating fiber tracker

6/6

