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Monte Carlo Simulation: Why

O Detailed simulation of subatomic particles is essential for
data analysis, detector design

O Understand how detector design affect
measurements and physics

O Use simulation to correct for inefficiencies,
inaccuracies, unknowns.

O The theory models to compare data against.

A good simulation demonstrates that we understand the detectors
and the physics we are studying



The problem

O Complex physics and geometry modeling
O Some physics process are extremely rare!l

O Heavy computation requirements, massively CPU-bound

O Already now more than 50% of WLCG power is used for simulations
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GeantV: Adapting simulation to modern
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Some benchmarks on Intel Xeon Phi
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Going beyond x10: fast simulation

O In the best case scenario GeantV will give O(10) speedup
O It likely won't be enough to cope with HL-LHC expected needs
O Improved, efficient and accurate fast simulation
O Currently available solutions are detector dependent
O Looking for a generic approach + user API
O A general fast simulation tool based on Machine Learning techniques
O ML techniques are more and more performant in different HEP fields

O Optimizing fraining time becomes crucial

http://hilumilhc.web.cem.ch 6



Going beyond x10: fast simulation




GeantV fast simulation

O A project in two steps:

O Phasel: Proof of concept and generic fastsim interface in
GeantV

O Phase2: Networks design and training optimisation on HPC



ML engine for fast simulation
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ML engine for fast simulation
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Phase 1: Proof of concept and inferface in GeantV

O Identify significant variables (PCA analysis, variable reduction)
O Test different ML and DL techniques

O Generative adversarial networks

O PCT and MP for MO regression
O Focus on most time consuming detectors

O Inifially reproduce calorimeter showers
O Train networks on full simulation

o Eventually test possibility of training on real data
O Integrate a generic interface in GeantV

O Automatic tool for training



Ex: testing GANSs for calorimeter showers

arXiv:1406.2661v1

O Simultaneously frain two models: N -
noise vecter \ Discriminator Network ‘
O Generative model G to capture the e
data distribution m—) | Gencrtortienerk
O Discriminative model D to estimate y,

the probability that a sample came
from training data rather than G

O The training procedure for G is to
maximize the probability of D making
a mistake

monarch butterfly goldfinch daisy

Conditional: arXiv:1610.09585v3
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High granularity LCD calorimeter single
partficle benchmark datasets simulated
with Geant4(l)

3D convolutional models implemented s

using Keras + Tensorflow
Batch training

Test different optimisers (SGD, Adam,
RMSprop)

Working on model optimisation to
improve physics description

(1) https://indico.cern.ch/event/575212/contributions/2361407/attachments/1386217/2109575/MLchallengesForHEP_OpenlabDec2016.pdf
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Optimising training time

O Using DL techniques for fast simulation is profitable if fraining time is not a
bottleneck

O Currently adversarial training of the generative models takes a few hours on
NVIDIA GTX1080 (Pascal)

O Study and optimise algorithm
O Test different hardware

O Test on asingle KNL node and measure multi-threading speedup, memory
footprint ...

O Test multi-node scaling

O Thanks to a collaboration with CINECA and Intel, we have access to a cluster
of KNL

www.cineca.it



Phase 2: Optimization and training on clusters

O We want to provide a generic, fully configurable tool
O Optimal network design depends on the problem to solve

O Need embedded algorithms to perform hyper-parameters tuning and
meta-optimization

O Scanlarge hyper-parameter space
O Need to improve training time by parallelization on large clusters

O Evaluate existing libraries and improve scaling of fraining process on
distributed systems

O Optimize training strategy by reducing communication overheads



O Ambition: to have the first ML prototype engine for fast simulation ready and fully
integrated in GeantV by the end of 2018 (GeantV beta)

O We are testing different models and technigques in Simulation _~AMYSS<_ Reconstruction
order to achieve the best possible physics results ‘/Q,mpm\
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O We also keep in mind computing efficiency and
insure optimal performance on modern hardware
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O Testinference step on dedicated hardware
O Even larger speedup gained by replacing digitization —e—
and reconstruction steps

Processing



Thank you






GeantV framework
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GeantV for HPC environments

O GeantV can run in many-nodes and multi-sockets modes

MPI embarrasing parallelism, file split
O NUMA aware

9
8
O Standard 1 process per node or multi-event server mode for better work ;
balancing available (MPI based) 2
4
3
! | MPI 2
( S y ; \ 0 1 2 3 4 5 6 7 8
iNumag i INuma; ; Numag i {Numa; :
i Trarsport Transport Transport —o6—SpeedUpBeforeS Ts/Tp  «weeeeet Theoretical limit
Node, Node,
MPI
(
INuma i :’Numa i N | :f H ENuma i E’Numa | gNuma : :’Numa i

No.demod[N]
A& bt Merging service

ZU



