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Monte Carlo Simulation: Why
¤ Detailed simulation of subatomic particles is essential for 
data analysis, detector design

¤ Understand how detector design affect 
measurements and physics

¤ Use simulation to correct for inefficiencies, 
inaccuracies, unknowns.

¤ The theory models to compare data against.
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A good simulation demonstrates that we understand the detectors 
and the physics we are studying



The problem
¤ Complex physics and geometry modeling

¤ Some physics process are extremely rare!
¤ Heavy computation requirements, massively CPU-bound
¤ Already now more than 50% of WLCG power is used for simulations
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@HL LHC we will need 
to simulate
• More data
• More complex 

events
• Faster!



GeantV: Adapting simulation to modern 
hardware

Classical 
simulation
hard to approach 
the full machine 
potential

GeantV
simulation
needs to profit at 
best from all 
processing 
pipelines

• Single event scalar 
transport

• Embarrassing 
parallelism

• Cache coherence – low
• Vectorization – low 

(scalar auto-
vectorization)

• Multi-event vector 
transport

• Fine grain parallelism
• Cache coherence – high
• Vectorization – high 

(explicit multi-particle 
interfaces)
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Some benchmarks on Intel Xeon Phi
¤ GeantV delivers already a part of the 

expected performance

¤ Testing new geometry navigation 
performance wrt ROOT (classical)

¤ CMS detector simulation (tabulated physics) 
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Going beyond x10: fast simulation

6http://hilumilhc.web.cern.ch

¤ In the best case scenario GeantV will give O(10) speedup

¤ It likely won’t be enough to cope with HL-LHC expected needs

¤ Improved, efficient and accurate fast simulation

¤ Currently available solutions are detector dependent

¤ Looking for a generic approach + user API

¤ A general fast simulation tool based on Machine Learning techniques 

¤ ML techniques are more and more performant in different HEP fields

¤ Optimizing training time becomes crucial



Going beyond x10: fast simulation
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GeantV fast simulation
¤ A project in two steps:

¤ Phase1: Proof of concept and generic fastsim interface in 
GeantV

¤ Phase2: Networks design and training optimisation on HPC
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ML engine for fast simulation
Untrained Model Training Trained Model

http://www.physics.umd.edu/rgroups/hep/LegoCMS/

Detector

Physics (e+, e-,γ,π..)
Kinematics…  

GeantV
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Phase 1: Proof of concept and interface in GeantV
¤ Identify significant variables (PCA analysis, variable reduction)

¤ Test different ML and DL techniques
¤ Generative adversarial networks

¤ PCT and MP for MO regression 

¤ Focus on most time consuming detectors
¤ Initially reproduce calorimeter showers 

¤ Train networks on full simulation 

¤ Eventually test possibility of training on real data

¤ Integrate a generic interface in GeantV

¤ Automatic tool for training
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Ex: testing GANs for calorimeter showers
¤ Simultaneously train two models: 

¤ Generative model G to capture the 
data distribution

¤ Discriminative model D to estimate 
the probability that a sample came 
from training data rather than G

¤ The training procedure for G is to 
maximize the probability of D making 
a mistake
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Ex: testing GANs for calorimeter showers
¤ High granularity LCD calorimeter single 

particle benchmark datasets  simulated 
with Geant4(1)

¤ 3D convolutional models implemented 
using Keras + Tensorflow

¤ Batch training

¤ Test different optimisers (SGD, Adam, 
RMSprop)

¤ Working on model optimisation to 
improve physics description
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Optimising training time
¤ Using DL techniques for fast simulation is profitable if training time is not a 

bottleneck

¤ Currently adversarial training of the generative models takes a few hours on 
NVIDIA GTX1080 (Pascal) 

¤ Study and optimise algorithm

¤ Test different hardware

¤ Test on a single KNL node and measure multi-threading speedup, memory 
footprint …

¤ Test multi-node scaling 

¤ Thanks to a collaboration with CINECA and Intel,  we have access to a cluster 
of KNL 

14www.cineca.it



Phase 2: Optimization and training on clusters
¤ We want to provide a generic, fully configurable tool

¤ Optimal network design depends on the problem to solve

¤ Need embedded algorithms to perform hyper-parameters tuning and 
meta-optimization

¤ Scan large hyper-parameter space 

¤ Need to improve training time by parallelization on large clusters

¤ Evaluate existing libraries and improve scaling of training process on 
distributed systems

¤ Optimize training strategy by reducing communication overheads
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Summary

¤ We are testing different models and techniques in 
order to achieve the best possible physics results

¤ We also keep in mind computing efficiency and 
insure optimal performance on modern hardware

¤ Test inference step on dedicated hardware

¤ Even larger speedup gained by replacing digitization 
and reconstruction steps
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¤ Ambition: to have the first ML prototype engine for fast simulation ready and fully 
integrated in GeantV by the end of 2018 (GeantV beta)



Thank you
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GeantV framework
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FastSim Stage
StopTrack

(Vectorized) 
Inference 
handler
BasketizerVirtual Select (track)



GeantV for HPC environments
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¤ GeantV can run in many-nodes and multi-sockets modes

¤ NUMA aware

¤ Standard 1 process per node or multi-event server mode for better work 
balancing available (MPI based) 


