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® Four HEP environments & their ML use cases

® What we are currently doing

® Going deep: proofs of principle

® First “production ready” DL algorithms

® Future ahead

® New challenges

® New instruments

® New solutions
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¢ 40 MHz in / 100 KHz out

e ~ 500 KB / event

® Processing time: ~10 s

® Based on coarse local reconstructions

® FPGAs / Hardware implemented 3



Four HEP enviromnments
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e |00 KHz in/ | KHz out

e ~ 500 KB / event
e Processing time: ~30 ms

® Based on simplified global reconstructions

e Software implemented on CPUs 4



Four HEP enviromnments
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o | KHzin/ |.2 KHz out

e~ | MB/200 KB/ 30 KB per event

® Processing time: ~20 s

® Based on accurate global reconstructions

e Software implemented on CPUs 5



e Up to ~ 500 Hz In / 100-1000 events out
e <30 KB per event
¢ Processing time irrelevant

® User-written code + centrally produced
selection algorithms
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Data Flow

QOuick decision

High Precision

efficiency vs Purity (small false positives / negatives)
7




LUJhat we are douing today




MU spplications today

® T[raditionally, object
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® Nowadays, mainly based on BDTs

® Crucial ingredient to discover the Higgs boson much
earlier than anticipated g




® Photons are complicated
to reconstruct

® signal in calorimeter

® nothing in the tracker

® Fakes from several sources

® hadrons in jets

® T°-> Yy

® Main discrimination handle
from shape of energy
cluster in the calorimeter

10



Photon identification

® BDT classifier used to separate true from fake photons

® improvement wrt “‘cut-based” approach

- CMS Preliminary 2.7tb" (13 TeV) 8 TeV
w 10°E t Data 8 1 : : R ’ CMS'
S F —— H—yy (m_ =125 GeV)x10* =
> i I MC background+stat.uncert. O Simulation
T 0 o
= I v-jet “ 0.8
jet-jet - fomic
o
10 £ 3
: S
_______ g 0.6
3
e pp — y + jet
Gkl Endcap
1R e ' — MVA photon ID
- e Sequential requirement ID o
11 1 | 111 | 11 1 | 11 1 | 111 | 11 1 | 11 1 | 111 | 11 1 | L1l 0 | l | I A A |
1 08-06-04-02 0 0.2 04 06 08 1 65 06 0.7 0.8 09 1

Photon ID BDT score Signal efficiency
11




Deep Learning GHEPR today




C\E/RW Going Deep: proof of principles

® Many people looking at Deep Learning applications for LHC use cases
® Majority of applications concern jet identification
® Deep Shallow Networks
® Convolutional NNs

® Recursive NNs

A ® GANs for simulation
® First applications in production _B_DTS
. @MiniBooNE,
® b-tagging Babar, etc
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NNs @LEP
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ﬁE/RW Going Deep: proof of principles
NS
® Many people looking at Deep Learning applications for LHC use cases

® Majority of applications concern jet identification

® Deep Shallow Networks

® Convolutional NNs My persona]

® Recursive NNis extrapolation
A ® GANs for simulation
® First applications in production BDTs _
@MiniBooNE, : DeeplLearning
® b- ' : .
b-tagging Babar, etc @LH_C. the
! time IS now
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2 NNs @LEP
g
-§‘ | o bos
f."g Puiceptron ;"& E‘im
seural Networks E’.’é?
M:::_;;w 1955 1311") 1675 1980 1965 1990 19¢8 2000 2005 2010 2015 2020

14




— \
a A 1| CMS Expariment at LMC( 1N
CERN iy e 2 rocorded Sundw; 12X10:02 2010 €BT
— e N ot 15 VTN
o =7 | Lumiex
\ ' l l l l \ J vorosdng 3349290 1 209 \
.

® |ets are cone-like showers of
quarks and gluons that produce
tens of particles, all close to
each other

® With large energies (e.g., LHC), \\V
jets can also come from H, WV,
top particles (decaying to jets, |

which overlap)
9.9  WZH

top 15

® Several papers in the last two
years on DNN solutions to this
problem




C\Ef'D/ Jet ID with Conviins

® Major challenge: irregular detector geometry
(vs “regular arrays” assumed in DL applications)

Signal
® Jet image processing to “regularise” jet showers o Iz g
and make DL work easier (cantering, rotating, .» _ i
flipping image) o -
30+ 10_§
.

® Good performances on simulated events
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https://arxiv.org/abs/1701.08784

QM Jet D with RMNNs

® Computing vision techniques assumes regular arrays of “pixels” as input

® Our detector have often irregular geometry ‘ .
hy™ (t;)

® We reconstruct particles from decor “pixels”

® DL can take as input directly the variables

® Recursive NNs are ideal for this task

Jet embedding

® natural order provided by jet algorithms

® variable #particles/jet can be handled

Event embedding Classifier | | |

V(tl) V(tz) V(tM)

h* (t1) h (t2) h)* (tar)

7\ /7 \ N
AT T T |
I arXiv:1702.00748
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https://arxiv.org/pdf/1702.00748.pdf

Jet ID with RMMs

® Better performances using jet constituents rather than jet
image (RNN & QCD at work)

® The used jet algorithm matters

® Particles work better than jets (angular resolution matters.
That’s why you want a granular detector)
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https://arxiv.org/pdf/1702.00748.pdf

GANMNs for dets

— convolutional layers in both G and D

. . . — fully-connected layers in both G and D
® First HEP appllcatlon — a combination of the two:

of GAN

O See Soﬁa’s talk for' Discriminator<

DCGAN
more on this topic = Yoo
Generator
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® Very promising, but \ |/
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https://arxiv.org/pdf/1701.05927.pdf

GANMNs for dets

~ Speed-up

N W
&) o

N
-

—
-

Ime (0 generate a el Image (IMmsS
o o

-

Pythia LAGAN LAGAN
CPU onl CPU GPU

arXiv:1701.0592720



https://arxiv.org/pdf/1701.05927.pdf

Rdversarial Trainng

® Adversarial training allows us to impose

physics-driven conditions to our training A

® Decorrelate DNN score from given physics
quantities (as done with BDTs in the past)

® | ook for a (local?) minimum which
minimises systematic effects (e.g., data/MC

agreement) arXiv:1703.03507
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https://arxiv.org/abs/1703.03507
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DU in real life: b-ta(_:)(_:]in(_:)

® Repeating history: b-tagging
is the first “production-
ready” algorithm that made
it to mainstream data

analysis usage

Example from CMS: tagging

based on high-level features

A~

previously used in BDTs)
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http://cds.cern.ch/record/2255736?ln=en

)M DU in real life: b-tagging

® MV2 using IP3D still rejects more
background for €b < 0.9 OGO

2D unit vector

® But thiS USES JetFitteI" and SV — category _FullyC0nnected

much more information RNN as - N SoftMax
input for MV2 is outside the
. ||| | = Z
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® But we can imagine replacing
IP3D with the RNN
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Deep Learning for GHER future




The evolving conditions of the machine are %
drifting the experiments to more prohibitive &
environments (luminosity comes with a
cost)

More (& bigger) events to handle

More noise from pileup interactions

Increase in resources will not scale with
needs

S0¢ T | SRS e S S S S |

45- ATLAS Internal (Data 2012) 5

Flat (or decreasing?) budget 40E o o vare rolease =

BE w7279 =

: : : 30E 1903 E

(Non linearly) increasing demand I E

. = 19.1.11 B

20; E

Need to find better ways to do things 15§ on— '

10 =

. SE 3

Problems can be formulated as image 6. . . .. . .. . .. .. . . .. . L G
15 20 25 30 35

detection, where big progresses are
happening (see ConvNNs)

Average number of primary vertices
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MNew Instruments

® The High-Luminosity P N
: / \ N
challenges will be faced (L -
improving the detector \ BN Glierr
{:"\.‘ ' H /‘3’/ ﬁl
: . e e
® add tracking capabilit N
earlier in the game (@LI P N
trigger) " ===

® improve detector coverage

® improve detector
granularity




MNew \INnstruments

® More resources needed to exploit detector improvements

® heavier reconstruction

® more reconstruction steps

® But budget is flat, so we need a paradigm shift




UJhat DL can do for us

Online Data Taking (real time)

Fast trigger algorithms for topology classification
Fast reconstruction algorithms (clustering, tracking,
classification)

Monitor detector operation conditions & data quality

Offline event processing (centralised)

Event indexing based on fopology classification

Fast collision simulation based on generative models
Fast reconstruction algorithms (clustering, tracking,
classification)

Data analysis (by users)

Particle identification

Jet tagging (g vs q vs b vs W/Z vs H vs 1)

Unsupervised search for new physics as outlier detection

28
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Examples: HG calorimetry

® Using as a benchmark the LCD

detector design

® Accessible beyond the boundaries of

experimental collaborations (eg,
ATLAS+CMS)

® Example of next-generation highly-

granular detector

® FullSIM available out of the box

® Defined single-particle benchmark

datasets

® pions, electrons, and photons

® Used to train 2D and 3D

reconstruction and identification
based on ConvNN
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Examples: Tracking

Find particle trajectories using energy depositions
. . on several sequential layers of pixel detectors
Hits PT'QPGI"G"'IO" Connecting the dots, with...
e Thousands of particles, each leaving energy
depositions on O(10) layers of detectors
Seeding e High particle-density regions w/ multiple
particles passing through same cluster of
energy deposition

.. ® Different kind of “hits” (plain, split, merged, ...)
Pattern Recognition

-
@

CMS Simulation, ys = 13 TeV, it + PU, BX=25ns
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events for HL-LHC
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Track cleaning
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UJhat real life looks like




Examples: Tracking

el hi i ot [guacrupits  Track fiting iacicures <
. I
Pixel hits m generation Doublets Automaton Quadruplets Track fitting

X

Hit Pixel
Clusters

based on

clusters

® Represent hits as 8x8 images 8x8pad
45000 1
, 40000 § >
® use the deposited energy 35000 |
5 30000 ¢
(ADC counts) as temperature  ®25000 |
20000 |
15000 |
® Use DNN to decide if a given 000
. . . 0
pair of hits is a good match or a
fake




True Positive Rate

Examples: Tracking

® Ongoing work with CMS simulations

® Currently exploring possibilities

1-false positive %

CNN eff. @ rej

® data representation
cnn_1

cnn_2

. 3 b

® network architecture UL
cnn_b5

cnn_6_bw

® First results are extremely promising
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cnn_5 ROC (area = 0.960581)
cnn_6_bw ROC (area = 0.891261)
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Better? Faster? Both?

® We would be extremely happy to have fast DLL algorithms that behave as well as
our current offline reconstruction

® we could move these algorithms earlier in our data flow
® Benefits downstream of a better triggers

® more “good events” to write for given resources

® |ess events to write for a given number of good events

® Of course, if we could achieve better performances as well

Future Deep Learning R&D 2

Data Flow

35



Training: BDTs vs DLs

® People are used to train their own ML algorithm on their laptop
® BDTs allow to do that

® This promoted the use of BDT to > 50% our data analysis, 100% of
the event reconstruction, etc

® To transition to DL, training as to be made user friendly

® Software is there (Keras, TensorFlow, etc in LHC-physicists-friendly
python echo system)

® We need the hardware (& the competence) to run small (and large)
training

® If this becomes part of the central processing workflows, we will
certainly need adequate central resources (e.g.,a GPU cluster

@CERN?)
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INnference: BDTs vs DLs

® Offline inference is not an issue (see )
® Online inference comes with constraints
® We are currently running ML@Trigger

® BDTs at HLT (b-tagging, photon ID) to “clean up” the reconstructed objects
(regressions & classifications)

® BDT at LI (as look-up tables) to improve energy measurements (low-dimension
regressions)

® We want to use DL at trigger for more
® go back to RAW data
® use DL to “predict” the reconstruction outcome
® save time in the trigger
® improve decision!? (i.e., save bandwidth, disk space, etc)

® VWe need R&D to see how much of this is realistic 37



