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Outline

• Four HEP environments & their ML use cases

• What we are currently doing

• Going deep: proofs of principle

• First “production ready” DL algorithms

• Future ahead

• New challenges

• New instruments

• New solutions
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• 40 MHz in / 100 KHz out

• ~ 500 KB / event

• Processing time: ~10 μs

• Based on coarse local reconstructions

• FPGAs / Hardware implemented
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Four HEP environments
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• 1 KHz in / 1.2 KHz out

• ~ 1 MB / 200 KB / 30 KB per event

• Processing time: ~20 s

• Based on accurate global reconstructions

• Software implemented on CPUs
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Four HEP environments
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• Up to ~ 500 Hz In / 100-1000 events out

• <30 KB per event

• Processing time irrelevant

• User-written code + centrally produced 
selection algorithms



Data Flow

Four HEP environments
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What we are doing today



ML applications today

• Traditionally, object 
reco/identification 
based on ML

•  regressions to 
improve energy 
measurement

• classification to 
suppress “fakes” (i.e., 
false positives)
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• Nowadays, mainly based on BDTs 

• Crucial ingredient to discover the Higgs boson much 
earlier than anticipated



Photon identification
• Photons are complicated 

to reconstruct

• signal in calorimeter

• nothing in the tracker

• Fakes from several sources

• hadrons in jets

• π0-> γγ

• Main discrimination handle 
from shape of energy 
cluster in the calorimeter 10



11
Photon ID BDT score

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Ev
en

ts

210

310

410

510

610
Preliminary CMS  (13 TeV)-12.7fb

Data
4 = 125 GeV)x10

H
 (mγγ→H

MC background+stat.uncert.
γ-γ

-jetγ
jet-jet

Data
4 = 125 GeV)x10

H
 (mγγ→H

MC background+stat.uncert.
γ-γ

-jetγ
jet-jet

Data
4 = 125 GeV)x10

H
 (mγγ→H

MC background+stat.uncert.
γ-γ

-jetγ
jet-jet

Data
4 = 125 GeV)x10

H
 (mγγ→H

MC background+stat.uncert.
γ-γ

-jetγ
jet-jet

Data
4 = 125 GeV)x10

H
 (mγγ→H

MC background+stat.uncert.
γ-γ

-jetγ
jet-jet

Data
4 = 125 GeV)x10

H
 (mγγ→H

MC background+stat.uncert.
γ-γ

-jetγ
jet-jet

Photon identification

• BDT classifier used to separate true from fake photons

• improvement wrt “cut-based” approach



Deep Learning @HEP today



Going Deep: proof of principles
• Many people looking at Deep Learning applications for LHC use cases

• Majority of applications concern jet identification

• Deep Shallow Networks

• Convolutional NNs

• Recursive NNs

• GANs for simulation

• First applications in production 

• b-tagging 
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Babar, etc

2020



• Many people looking at Deep Learning applications for LHC use cases

• Majority of applications concern jet identification

• Deep Shallow Networks

• Convolutional NNs

• Recursive NNs

• GANs for simulation

• First applications in production 

• b-tagging 
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NNs @LEP

BDTs 
@MiniBooNE, 

Babar, etc
DeepLearning 

@LHC: the 
time is now 

2020

My personal 
extrapolation

Going Deep: proof of principles



Jet ID with ML

• Jets are cone-like showers of 
quarks and gluons that produce 
tens of particles, all close to 
each other

• With large energies (e.g., LHC), 
jets can also come from H, W, 
top particles (decaying to jets, 
which overlap)

• Several papers in the last two 
years on DNN solutions to this 
problem

15q, g W,Z,H top
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Figure 8. Left: performance of di↵erent DeepTop setups, including the curves shown in Fig. 3. Right:
performance of the neural network tagger compared to the QCD-based approaches SoftDrop plus N -
subjettiness and including the HEPTopTagger variables.

to the HEPTopTagger or SoftDrop picks up this additional information and also induces the
three-prong top decay structure into SoftDrop. We use N kT -axes, � = 1 and the reference
distance R

0

. A small value ⌧N indicates consistency with N or less substructure axes, so an N -
prong decays give rise to a small ratio ⌧N/⌧N�1

. For top tagging ⌧

3

/⌧

2

is particularly useful in
combination with QCD taggers in a multivariate setup [19]. The N -subjettiness variables ⌧j can
be defined based on the complete fat jet or based on the fat jet after applying the SoftDrop
criterion. Using ⌧j and ⌧

sd

j in a multivariate analysis usually leads to optimal result.

B. Comparison

To benchmark the performance of ourDeepTopDNN, we compare its ROC curve with standard
Boosted Decision Trees based on the C/A jets using SoftDrop combined with N -subjettiness.
From Fig. 3 we know the spread of performance for the di↵erent network architectures for fully
pre-processed images. In Fig. 8 we see that minimal pre-processing actually leads to slightly better
results, because the combination or rotation and cropping described in Sec. II A leads to a small
loss in information. Altogether, the band of di↵erent machine learning results indicates how large
the spread of performance will be whenever for example binning issues in pT,fat are taken into
account, in which case we we would no longer be using the perfect network for each fat jet.

For our BDT we use GradientBoost in the Python package sklearn [28] with 200 trees, a
maximum depth of 2, a learning rate of 0.1, and a sub-sampling fraction of 90% for the kinematic
variables
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where m
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is the un-groomed mass of the fat jet. This is similar to standard experimental ap-
proaches for our transverse momentum range pT,fat = 350 ... 400 GeV. In addition, we include the
HEPTopTagger2 information from filtering combined with a mass drop criterion,
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SoftDrop + n-subjettiness:

MotherOfTaggers:
• Train a BDT on a set of 

standard tagging variables
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Jet ID with ConvNNs
• Major challenge: irregular detector geometry 

(vs “regular arrays” assumed in DL applications)

• Jet image processing to “regularise” jet showers 
and make DL work easier (cantering, rotating, 
flipping image)

• Good performances on simulated events
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Image approach

• Jets = 2d grayscale images:

• 1 pixel = 0.1 in eta, 5 degree in phi

• pixel energy: calorimeter ET

• Preprocessing

• Center maximum

• Rotate so that second maximum is 12 o’clock

• Flip so that third maximum is on the right side

• Crop to 40x40 pixels
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Figure 1. Jet image after pre-processing for the signal (left) and background (right). Each picture is averaged
over 10,000 actual images.

pT,fat = 350 ... 450 GeV, such that all top decay products can be easily captured in the fat jet. For
signal events, we require that the fat jet can be associated with a Monte-Carlo truth top quark
within �R < 1.2.

We can speed up the learning process or illustrate the ConvNet performance by applying a set
of pre-processing steps:

1. Find maxima: before we can align any image we have to identify characteristic points. Using
a filter of size 3 ⇥ 3 pixels, we localize the three leading maxima in the image;

2. Shift: we then shift the image to center the global maximum taking into account the peri-
odicity in the azimuthal angle direction;

3. Rotation: next, we rotate the image such that the second maximum is in the 12 o’clock
position. The interpolation is done linearly;

4. Flip: next we flip the image to ensure the third maximum is in the right half-plane;

5. Crop: finally, we crop the image to 40 ⇥ 40 pixels.

Throughout the paper we will apply two pre-processing setups: for minimal pre-processing we apply
steps 1, 2 and 5 to define a centered jet image of given size. Alternatively, for full pre-processing
we apply all five steps. In Fig. 1 we show averaged signal and background images based on the
transverse energy from 10,000 individual images after full pre-processing. The leading subjet is in
the center of the image, the second subjet is in the 12 o’clock position, and a third subjet from
the top decay is smeared over the right half of the signal images. These images indicate that fully
pre-processed images might lose a small amount of information at the end of the 12 o’clock axis.

A non-trivial pre-processing step is the shift in the ⌘ direction, since the jet energy E is not
invariant under a longitudinal boost. Following Ref. [12] we investigate the e↵ect on the mass
information contained in the images,
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• Computing vision techniques assumes regular arrays of “pixels” as input

• Our detector have often irregular geometry

• We reconstruct particles from decor “pixels”

• DL can take as input directly the variables

• Recursive NNs are ideal for this task

• natural order provided by jet algorithms

• variable #particles/jet can be handled 
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FIG. 2. QCD-motivated event embedding for classification. The embedding of an event is computed by feeding the sequence
of pairs (v(tj),h

jet
1 (tj)) over the jets it is made of, where v(tj) is the unprocessed 4-momentum of the jet tj and hjet

1 (tj) is its
embedding. The resulting event-level embedding hevent

M (e) is chained to a subsequent classifier, as illustrated in the right part
of the figure.

the subsequent translation, rotation, and reflection pre-
processing steps (omitting cropping and normalization).
When processing the image data, we inverted the nor-
malization that enforced the sum of the squares of the
pixel intensities be equal to one.1

For our event-level experiments we were not able to use
the data from Ref. [6] because the signal sample corre-
sponded to pp ! W (! J)Z(! ⌫⌫̄) and the background
to pp ! jj. Thus the signal was characterized by one
high-pT jet and large missing energy from Z(! ⌫⌫̄) which
is trivially separated from the dijet background. For this
reason, we generated our own PYTHIA and DELPHES sam-
ples of pp ! W 0 ! W (! J)Z(! J) and QCD back-
ground such that both the signal and background have
two high-pT jets. We use mW 0 = 700 GeV and restrict
p̂t of the 2 ! 2 scattering process to 300 < p̂t < 350
GeV. Our focus is to demonstrate the scalability of our
method to all the particles or towers in an event, and not
to provide a precise statement about physics reach for
this signal process. In this case each event e was clus-
tered by the same anti-kt algorithm with R = 1, and then
the constituents of each jet were treated as in Sec. IIIA
(i.e., reclustered using kt or a sequential ordering in pT
to provide the network topology for a non-gated embed-
ding). Additionally, the constituents of each jet were

1
In Ref. [2], the jet images did not include the DELPHES detector

simulation, they were comparable to our particle scenario with

the additional discretization into pixels.

pre-processed with translation, rotation, and reflection
as in the individual jet case. Training was carried out on
a dataset of 100,000 signal and background events with
equal prior. Performance was evaluated on an indepen-
dent test set of 100,000 other events, as measured by the
ROC AUC and R✏=80% of the model predictions. Again,
average scores are given with uncertainty estimates that
come from training 30 models with distinct initial ran-
dom seeds.
In both jet-level and event-level experiments, the di-

mension of the embeddings q was set to 40. Training was
conducted using Adam [22] as an optimizer for 25 epochs,
with a batch size of 64 and a learning rate of 0.0005 de-
cayed by a factor of 0.9 after every epoch. These param-
eters were found to perform best on average, as deter-
mined through an optimization of the hyper-parameters.
Performance was monitored during training on a valida-
tion set of 5000 samples to allow for early stopping and
prevent from overfitting.

V. EXPERIMENTS WITH JET-LEVEL
CLASSIFICATION

A. Performance studies

We carried out performance studies where we varied
the following factors: the projection of the 4-momenta
into an image, the source of those 4-momenta, the topol-

arXiv:1702.00748

Jet ID with RNNs

https://arxiv.org/pdf/1702.00748.pdf
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FIG. 3. Jet classification performance for various input rep-
resentations of the RNN classifier, using kt topologies for the
embedding. The plot shows that there is significant improve-
ment from removing the image processing step and that sig-
nificant gains can be made with more accurate measurements
of the 4-momenta.

FIG. 4. Jet classification performance of the RNN classifier
based on various network topologies for the embedding (par-
ticles scenario). This plot shows that topology is significant,
as supported by the fact that results for kt, C/A and desc-pT
topologies improve over results for anti-kt, asc-pT and random
binary trees. Best results are achieved for C/A and desc-pT
topologies, depending on the metric considered.

further supported by the poor performance of the random
binary tree topology. We expected however that a simple
sequence (represented as a degenerate binary tree) based
on ascending and descending pT ordering would not per-
form particularly well, particularly since the topology
does not use any angular information. Surprisingly, the
simple descending pT ordering slightly outperforms the
RNNs based on kt and C/A topologies. The descending
pT network has the highest pT 4-momenta near the root
of the tree, which we expect to be the most important.
We suspect this is the reason that the descending pT out-
performs the ascending pT ordering on particles, but this
is not supported by the performance on towers. A similar
observation was already made in the context of natural
languages [24–26], where tree-based models have at best
only slightly outperformed simpler sequence-based net-
works. While recursive networks appear as a principled
choice, it is conjectured that recurrent networks may in
fact be able to discover and implicitly use recursive com-
positional structure by themselves, without supervision.
d. Gating The last factor that we varied was

whether or not to incorporate gating in the RNN. Adding
gating increases the number of parameters to 48,761, but
this is still about 20 times smaller than the number of
parameters in the MaxOut architectures used in previ-
ous jet image studies. Table I shows the performance of
the various RNN topologies with gating. While results
improve significantly with gating, most notably in terms
of R✏=50%, the trends in terms of topologies remain un-
changed.
e. Other variants Finally, we also considered a num-

ber of other variants. For example, we jointly trained
a classifier with the concatenated embeddings obtained
over kt and anti-kt topologies, but saw no significant
performance gain. We also tested the performance of
recursive activations transferred across topologies. For
instance, we used the recursive activation learned with
a kt topology when applied to an anti-kt topology and
observed a significant loss in performance. We also con-
sidered particle and tower level inputs with an additional
trimming preprocessing step, which was used for the jet
image studies, but we saw a significant loss in perfor-
mance. While the trimming degraded classification per-
formance, we did not evaluate the robustness to pileup
that motivates trimming and other jet grooming proce-
dures.

B. Infrared and Collinear Safety Studies

In proposing variables to characterize substructure,
physicists have been equally concerned with classification
performance and the ability to ensure various theoretical
properties of those variables. In particular, initial work
on jet algorithms focused on the Infrared-Collinear (IRC)
safe conditions:

• Infrared safety. The model is robust to augmenting
e with additional particles {vN+1, . . . ,vN+K} with

Jet ID with RNNs
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fact be able to discover and implicitly use recursive com-
positional structure by themselves, without supervision.
d. Gating The last factor that we varied was

whether or not to incorporate gating in the RNN. Adding
gating increases the number of parameters to 48,761, but
this is still about 20 times smaller than the number of
parameters in the MaxOut architectures used in previ-
ous jet image studies. Table I shows the performance of
the various RNN topologies with gating. While results
improve significantly with gating, most notably in terms
of R✏=50%, the trends in terms of topologies remain un-
changed.
e. Other variants Finally, we also considered a num-

ber of other variants. For example, we jointly trained
a classifier with the concatenated embeddings obtained
over kt and anti-kt topologies, but saw no significant
performance gain. We also tested the performance of
recursive activations transferred across topologies. For
instance, we used the recursive activation learned with
a kt topology when applied to an anti-kt topology and
observed a significant loss in performance. We also con-
sidered particle and tower level inputs with an additional
trimming preprocessing step, which was used for the jet
image studies, but we saw a significant loss in perfor-
mance. While the trimming degraded classification per-
formance, we did not evaluate the robustness to pileup
that motivates trimming and other jet grooming proce-
dures.

B. Infrared and Collinear Safety Studies

In proposing variables to characterize substructure,
physicists have been equally concerned with classification
performance and the ability to ensure various theoretical
properties of those variables. In particular, initial work
on jet algorithms focused on the Infrared-Collinear (IRC)
safe conditions:

• Infrared safety. The model is robust to augmenting
e with additional particles {vN+1, . . . ,vN+K} with

• Better performances using jet constituents rather than jet 
image (RNN & QCD at work)

• The used jet algorithm matters

• Particles work better than jets (angular resolution matters. 
That’s why you want a granular detector)

arXiv:1702.00748

https://arxiv.org/pdf/1702.00748.pdf


GANs for Jets

• First HEP application 
of GAN

• See Sofia’s talk for 
more on this topic

• Very promising, but 
there is work to do
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Benchmark Models
• DCGAN — convolutional layers in both G and D 
• FCGAN — fully-connected layers in both G and D 
• HYBRIDGAN — a combination of the two:
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Physical Distributions
Check: does the LAGAN recover the true data distribution as 

projected onto a set of meaningful 1D manifolds?✓
— signal 
— background

arXiv:1701.05927

https://arxiv.org/pdf/1701.05927.pdf
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GANs for Jets
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• Adversarial training allows us to impose 
physics-driven conditions to our training

• Decorrelate DNN score from given physics 
quantities (as done with BDTs in the past)

• Look for a (local?) minimum which 
minimises systematic effects (e.g., data/MC 
agreement) 

21

Adversarial Training 

Chase Shimmin (Yale University)

ROC Performance
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Adversarial method: 
slightly lower AUC

… however this is not 
our figure of merit!

The Data 
Scientists figure 

of merit

The Physicists 
figure of merit

arXiv:1703.03507

Some Mass

https://arxiv.org/abs/1703.03507


DL in real life: b-tagging

• Repeating history: b-tagging 
is the first “production-
ready” algorithm that made 
it to mainstream data 
analysis usage

• Example from CMS: tagging 
based on high-level features 
(previously used in BDTs)

22
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• Better performance than c-tagger

• Note, the c-tagger uses some lepton information

• DeepCSV more stringent in not accepting jets, 

thus less close to 1 (no track events).
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• DeepCSV 40% smaller fake (0.6%) rate at same b 
efficiency as medium WP CSVv2

• 20% relative (10% absolute) better efficiency for 
0.1% misid. probability.
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• MV2 using IP3D still rejects more 
background for εb < 0.9 

• But this uses JetFitter and SV → 
much more information RNN as 
input for MV2 is outside the 
scope of this talk 

• But we can imagine replacing 
IP3D with the RNN 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RNN Performance (compared to high-level tagger)
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I MV2 using IP3D still rejects more background for "b < 0.9

I But this uses JetFitter and SV ! much more information
I RNN as input for MV2 is outside the scope of this talk

I But we can imagine replacing IP3D with the RNN
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DL in real life: b-tagging

ATL-PHYS-PUB-2017-003 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-003/
http://www.apple.com
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Deep Learning for @HEP future



The challenge ahead

• The evolving conditions of the machine are 
drifting the experiments to more prohibitive 
environments (luminosity comes with a 
cost)

• More (& bigger) events to handle

• More noise from pileup interactions

• Increase in resources will not scale with 
needs

• Flat (or decreasing?) budget

• (Non linearly) increasing demand

• Need to find better ways to do things

• Problems can be formulated as image 
detection, where big progresses are 
happening (see ConvNNs)
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Tracking 

• High luminosity means high pileup 
• Combinatorics of charged particle tracking become 

extremely challenging for GPDs 
• Generally sub-linear scaling for track reconstruction 

time with m 

• Impressive improvements for Run 2, but we need to go 
much further 

23



New instruments
• The High-Luminosity 

challenges will be faced 
improving the detector

• add tracking capability 
earlier in the game (@L1 
trigger)

• improve detector coverage

• improve detector 
granularity

26

The HGCAL Cells geometry

12

To cope the irradiation / PU:
! η-dependent depletion of Si
! η-dependent cell size

Hexagonal 6” Si wafer (256 or 512 channels

Mechanics: HGC-HCAL 

14

! Bolted Brass mechanical structure (follows the current CMS HE)

! 60° Brass plates machined to insert 30° (single-side) cassettes (grey in the drawings)



New instruments
• The High-Luminosity 

challenges will be faced 
improving the detector

• add tracking capability 
earlier in the game (@L1 
trigger)

• improve detector coverage

• improve detector 
granularity
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The HGCAL Cells geometry

12

To cope the irradiation / PU:
! η-dependent depletion of Si
! η-dependent cell size

Hexagonal 6” Si wafer (256 or 512 channels

Mechanics: HGC-HCAL 

14

! Bolted Brass mechanical structure (follows the current CMS HE)

! 60° Brass plates machined to insert 30° (single-side) cassettes (grey in the drawings)

• More resources needed to exploit detector improvements

• heavier reconstruction

• more reconstruction steps

• But budget is flat, so we need a paradigm shift



Online Data Taking (real time) 

Fast trigger algorithms for topology classification

Fast reconstruction algorithms (clustering, tracking, 
classification)

Monitor detector operation conditions & data quality


Offline event processing (centralised)

Event indexing based on topology classification

Fast collision simulation based on generative models

Fast reconstruction algorithms (clustering, tracking, 
classification)

Data analysis (by users)

Particle identification

Jet tagging (g vs q vs b vs W/Z vs H vs t) 

Unsupervised search for new physics as outlier detection

28

What DL can do for us



Examples: HG calorimetry

• Using as a benchmark the LCD 
detector design

• Accessible beyond the boundaries of 
experimental collaborations (eg, 
ATLAS+CMS)

• Example of next-generation highly-
granular detector

• FullSIM available out of the box

• Defined single-particle benchmark 
datasets

• pions, electrons, and photons

• Used to train 2D and 3D 
reconstruction and identification 
based on ConvNN 29



Examples: Tracking

30

Se
ve

ra
l T

im
es

Hits Preparation


Seeding 


Pattern Recognition


Track Fitting


Track cleaning

Find particle trajectories using energy depositions 
on several sequential layers of pixel detectors

Connecting the dots, with…

• Thousands of particles, each leaving energy 

depositions on O(10) layers of detectors

• High particle-density regions w/ multiple 

particles passing through same cluster of 
energy deposition


• Different kind of “hits” (plain, split, merged, …)

Tracking 

• High luminosity means high pileup 
• Combinatorics of charged particle tracking become 

extremely challenging for GPDs 
• Generally sub-linear scaling for track reconstruction 

time with m 

• Impressive improvements for Run 2, but we need to go 
much further 

23

We will have ~200 PU 
events for HL-LHC



What you want to do
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What real life looks like
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events for HL-LHC



• Represent hits as 8x8 images

• use the deposited energy 
(ADC counts) as temperature

• Use DNN to decide if a given 
pair of hits is a good match or a 
fake

Pixel hits
Doublet 

generation

Cellular 
Automaton

Track fittingHits Doublets Quadruplets Track curves

Hit	Pixel
Clusters

Filter
based on	
clusters

Tracking workflow

Future Tracking Meeting
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Use Machine Learning &
Image Recognition techniques
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for doublets based on clusters
shapes.
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Examples: Tracking



Future Tracking Meeting

TTbar_13+TTbar_13TeV

Detectors	pair – BPix1-BPix2

11 April 2017

/eos/cms/store/cmst3/group/dehep/convPixels/TTBar_NOPU/

Detector pair doublet datasets

_bw for	B&W	correction
_a	for	angular correction

Future Tracking Meeting

TTbar_13+TTbar_13TeV

Detectors	pair – BPix1-BPix2

11 April 2017

/eos/cms/store/cmst3/group/dehep/convPixels/TTBar_NOPU/

Detector pair doublet datasets

_bw for	B&W	correction
_a	for	angular correction

• Ongoing work with CMS simulations

• Currently exploring possibilities

• data representation

• network architecture

• …

• First results are extremely promising
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Future Tracking Meeting

TTbar_13+TTbar_13TeV

Detectors	pair – BPix1-BPix2

11 April 2017

/eos/cms/store/cmst3/group/dehep/convPixels/TTBar_NOPU/

Detector pair doublet datasets

_bw for	B&W	correction
_a	for	angular correction

Examples: Tracking

1-false positive %

true positive %



Better? Faster? Both?
• We would be extremely happy to have fast DLL algorithms that behave as well as 

our current offline reconstruction

• we could move these algorithms earlier in our data flow

• Benefits downstream of a better triggers

• more “good events” to write for given resources

• less events to write for a given number of good events

• Of course, if we could achieve better performances as well

35
Data Flow

Future Deep Learning R&D ?



Training: BDTs vs DLs
• People are used to train their own ML algorithm on their laptop

• BDTs allow to do that

• This promoted the use of BDT to > 50% our data analysis,  100% of 
the event reconstruction, etc

• To transition to DL, training as to be made user friendly

• Software is there (Keras, TensorFlow, etc in LHC-physicists-friendly 
python echo system)

• We need the hardware (& the competence) to run small (and large) 
training

• If this becomes part of the central processing workflows, we will 
certainly need adequate central resources (e.g., a GPU cluster 
@CERN?)
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Inference: BDTs vs DLs
• Offline inference is not an issue (see )

• Online inference comes with constraints

• We are currently running ML@Trigger

• BDTs at HLT (b-tagging, photon ID) to “clean up” the reconstructed objects 
(regressions & classifications)

• BDT at L1 (as look-up tables) to improve energy measurements (low-dimension 
regressions)

• We want to use DL at trigger for more

• go back to RAW data

• use DL to “predict” the reconstruction outcome

• save time in the trigger

• improve decision? (i.e., save bandwidth, disk space, etc)

• We need R&D to see how much of this is realistic 37


