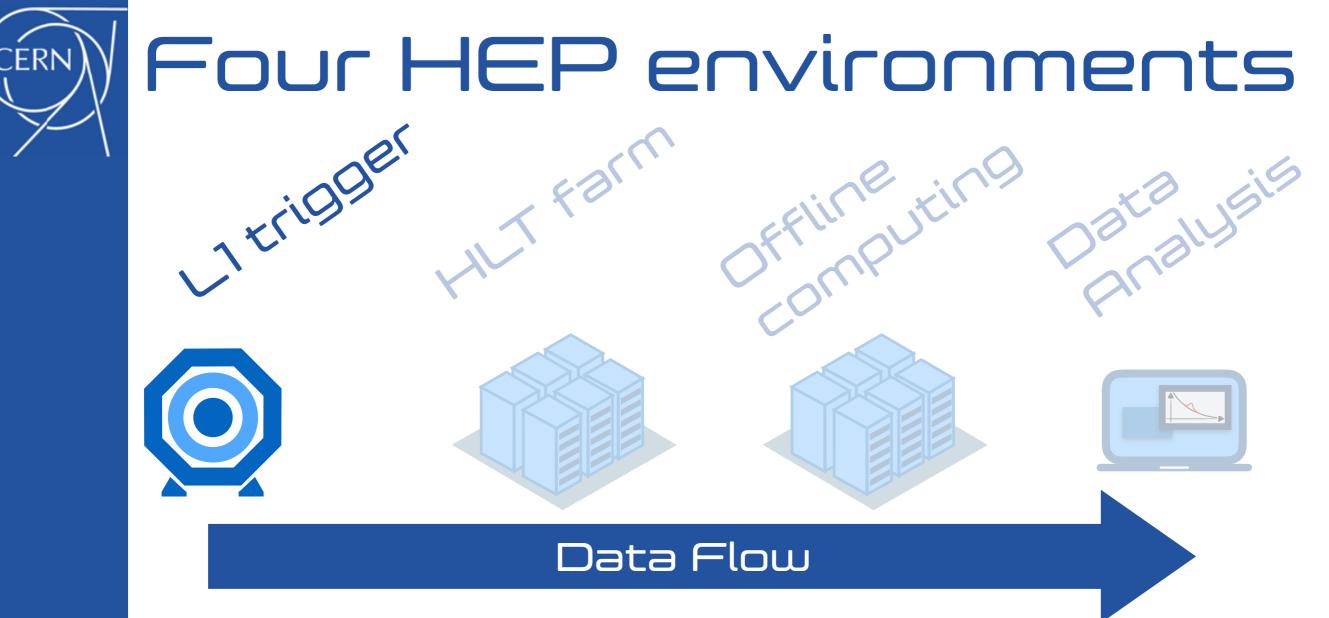
Machine Learning for (collision-event) reconstruction

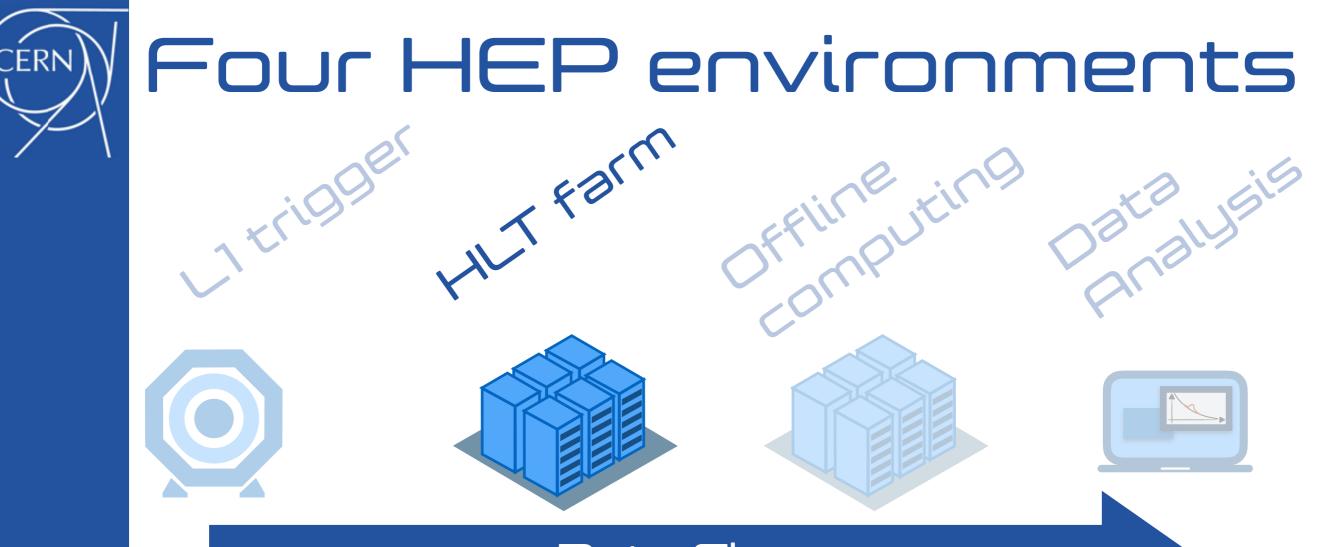
Maurizio Pierini

Outline

- Four HEP environments & their ML use cases
- What we are currently doing
- Going deep: proofs of principle
- First "production ready" DL algorithms
- Future ahead
 - New challenges
 - New instruments
 - New solutions

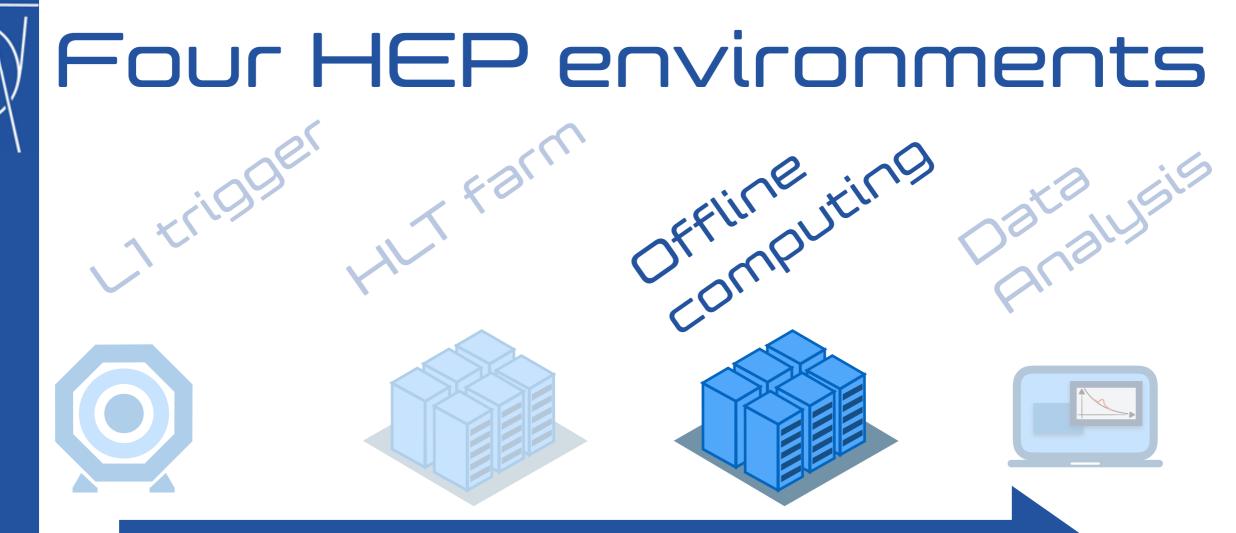


- 40 MHz in / 100 KHz out
- ~ 500 KB / event
- Processing time: $\sim 10 \ \mu s$
- Based on coarse local reconstructions
- FPGAs / Hardware implemented



Data Flow

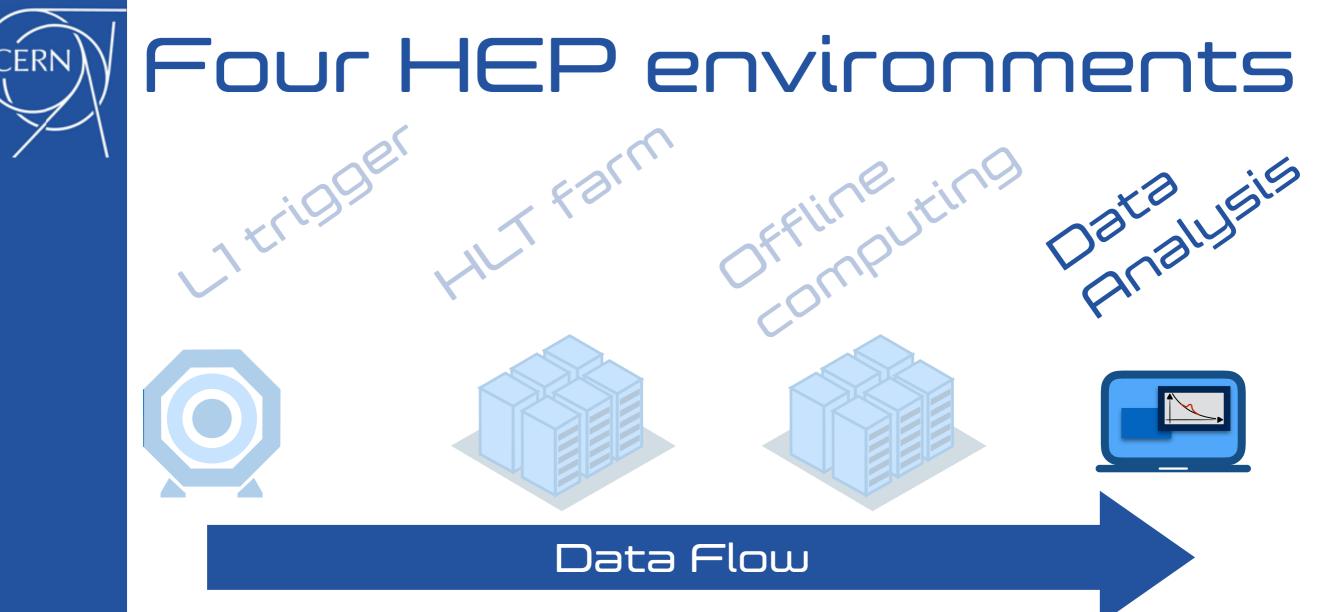
- 100 KHz in / 1 KHz out
- ~ 500 KB / event
- Processing time: ~30 ms
- Based on simplified global reconstructions
- Software implemented on CPUs



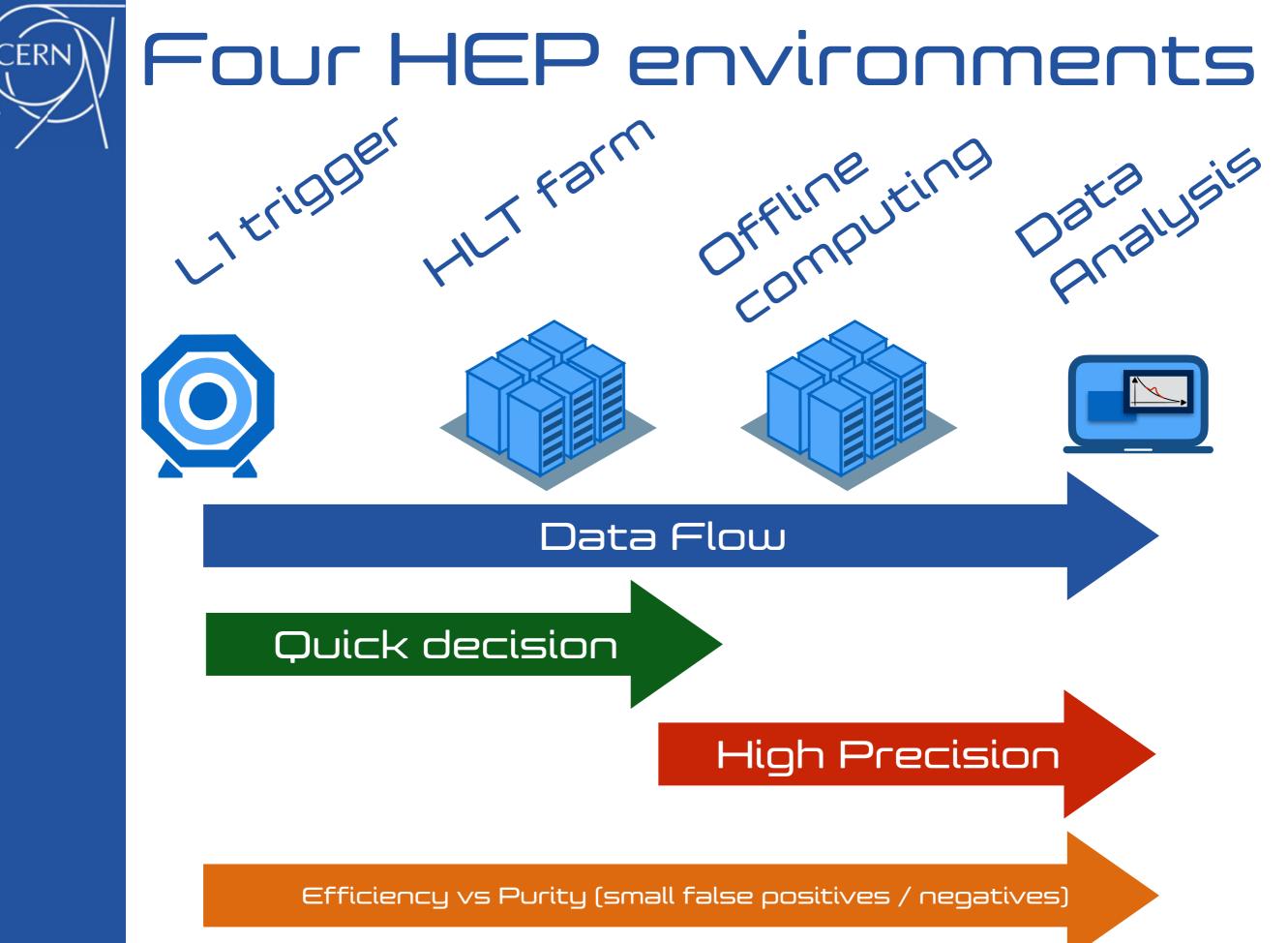
CÈRN

Data Flow

- I KHz in / I.2 KHz out
- ~ I MB / 200 KB / 30 KB per event
- Processing time: ~20 s
- Based on accurate global reconstructions
- Software implemented on CPUs



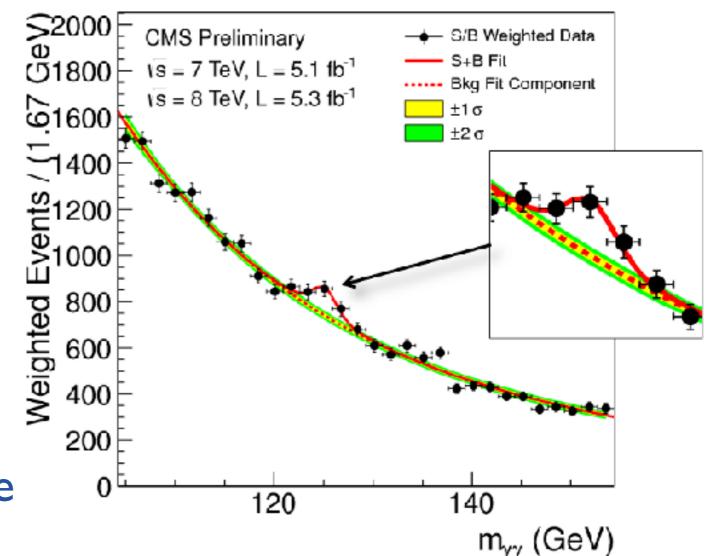
- Up to ~ 500 Hz In / 100-1000 events out
- <30 KB per event
- Processing time irrelevant
- User-written code + centrally produced selection algorithms



Uhat we are doing today

ML applications today

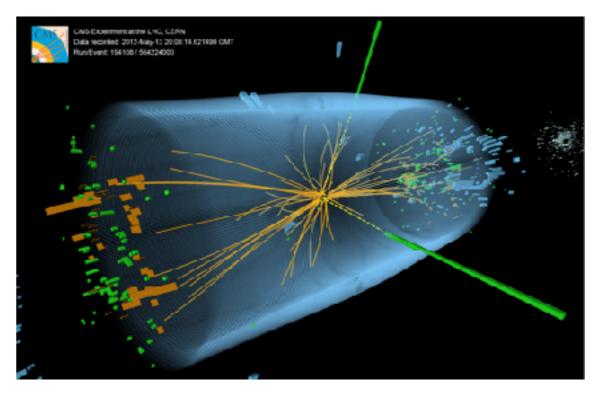
- Traditionally, object reco/identification based on ML
 - regressions to improve energy measurement
 - classification to suppress "fakes" (i.e false positives)

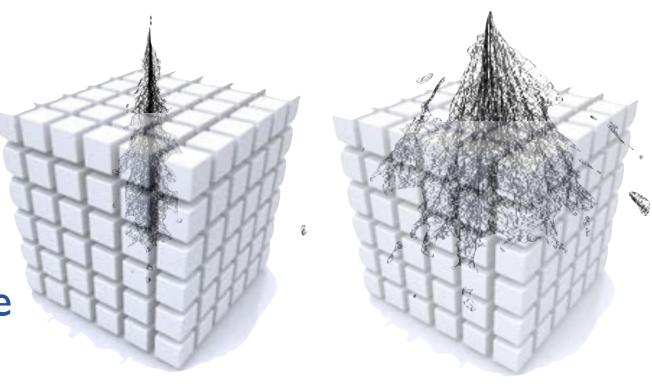


- Nowadays, mainly based on BDTs
- Crucial ingredient to discover the Higgs boson much earlier than anticipated

Photon identification

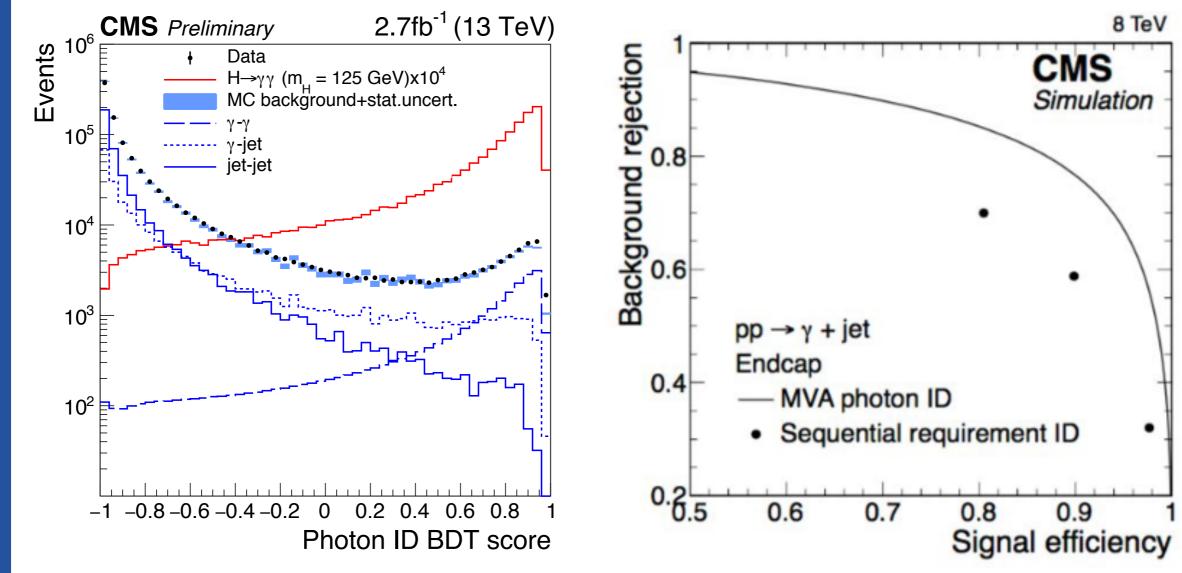
- Photons are complicated to reconstruct
 - signal in calorimeter
 - nothing in the tracker
- Fakes from several sources
 - hadrons in jets
 - π⁰-> γγ
- Main discrimination handle from shape of energy cluster in the calorimeter





Photon identification

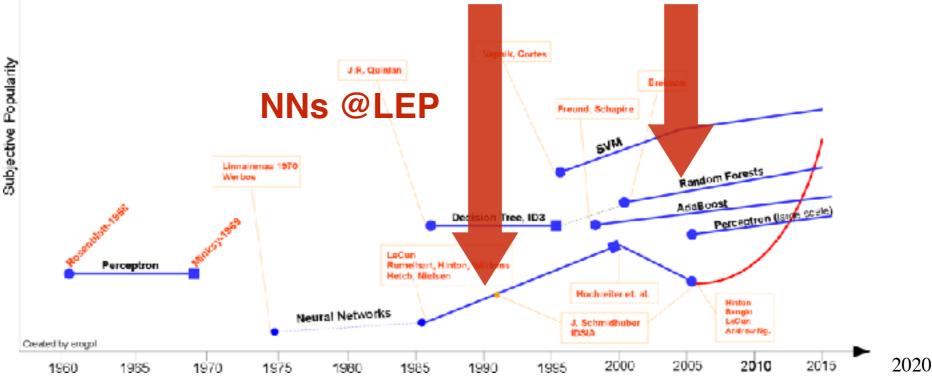
- BDT classifier used to separate true from fake photons
 - improvement wrt "cut-based" approach



Deep Learning @HEP today

Going Deep: proof of principles

- Many people looking at Deep Learning applications for LHC use cases
 - Majority of applications concern jet identification
 - Deep Shallow Networks
 - Convolutional NNs
 - Recursive NNs
 - GANs for simulation
 - First applications in production
 - b-tagging



Going Deep: proof of principles

- Many people looking at Deep Learning applications for LHC use cases
 - Majority of applications concern jet identification
 - Deep Shallow Networks
 - Convolutional NNs
 - Recursive NNs
 - GANs for simulation
 - First applications in production
 - b-tagging

1970

1975

1980

1985

1990

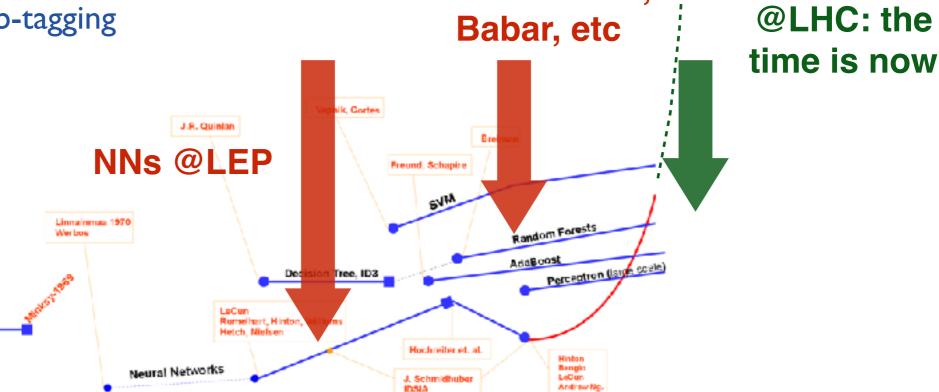
Perceptron

1965

Created by erogo

1960

Subjective Popularity



ID:SIA

1995

2000

2005

2010

2015

My personal

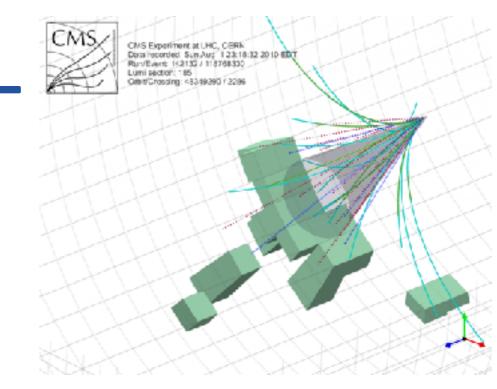
extrapolation

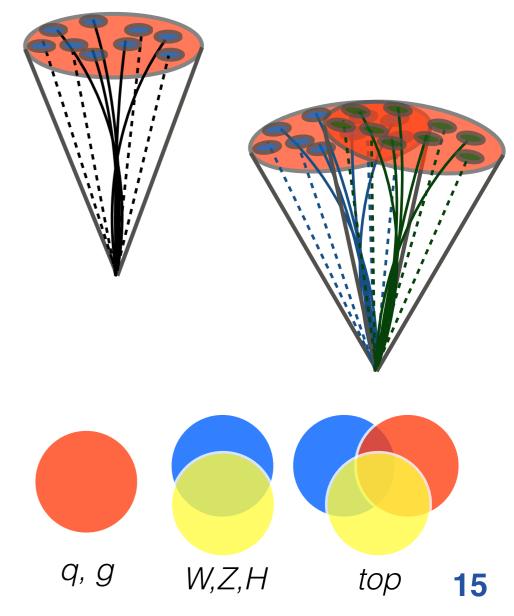
DeepLearning

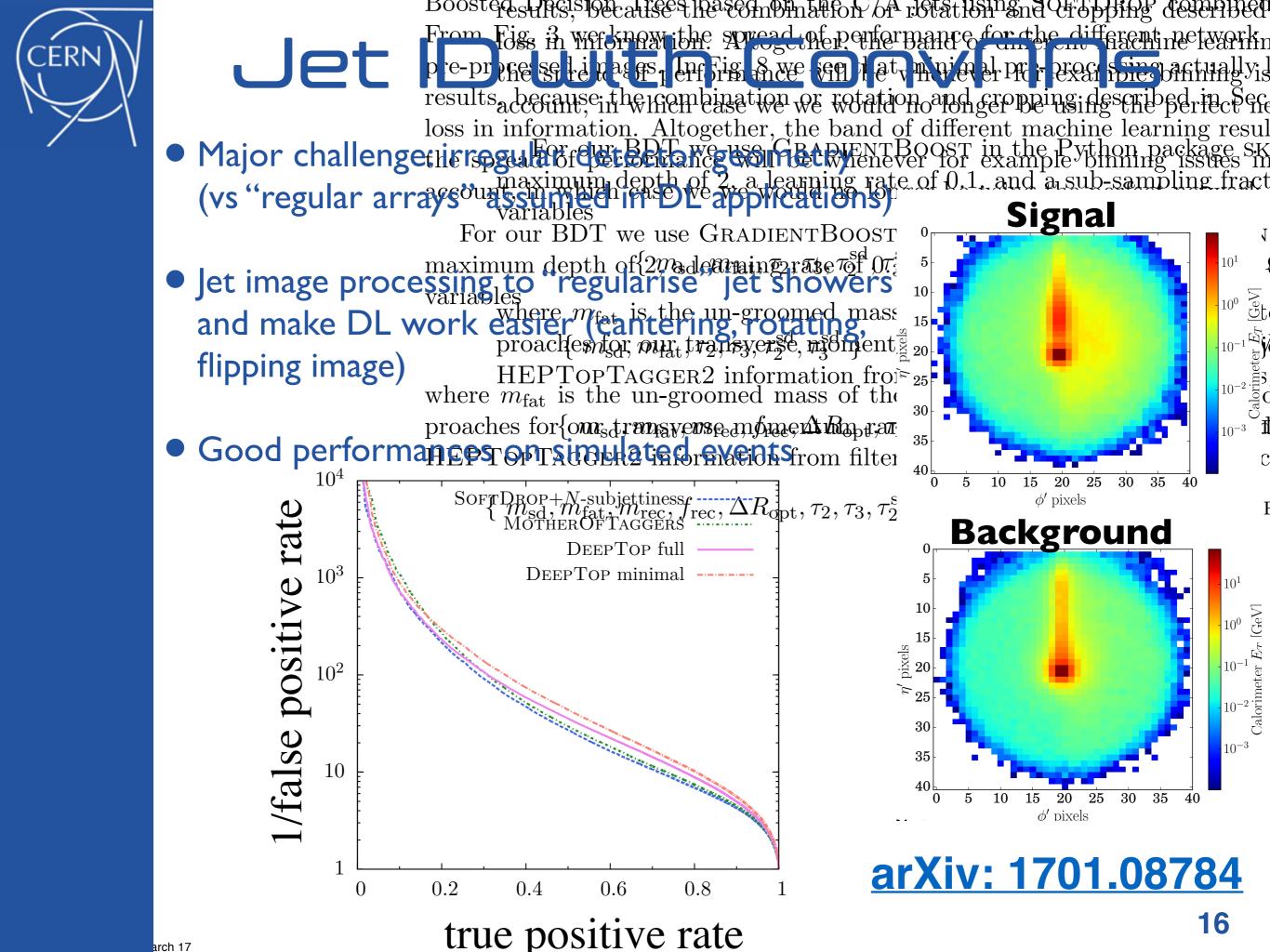
2020

Jet ID with ML

- Jets are cone-like showers of quarks and gluons that produce tens of particles, all close to each other
- With large energies (e.g., LHC), jets can also come from H,W, top particles (decaying to jets, which overlap)
- Several papers in the last two years on DNN solutions to this problem

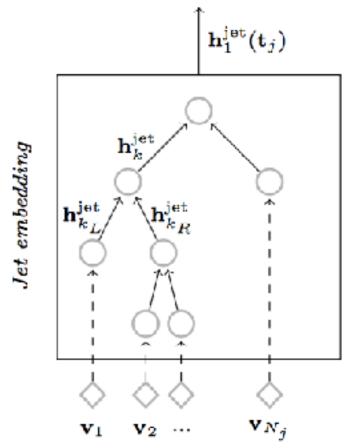


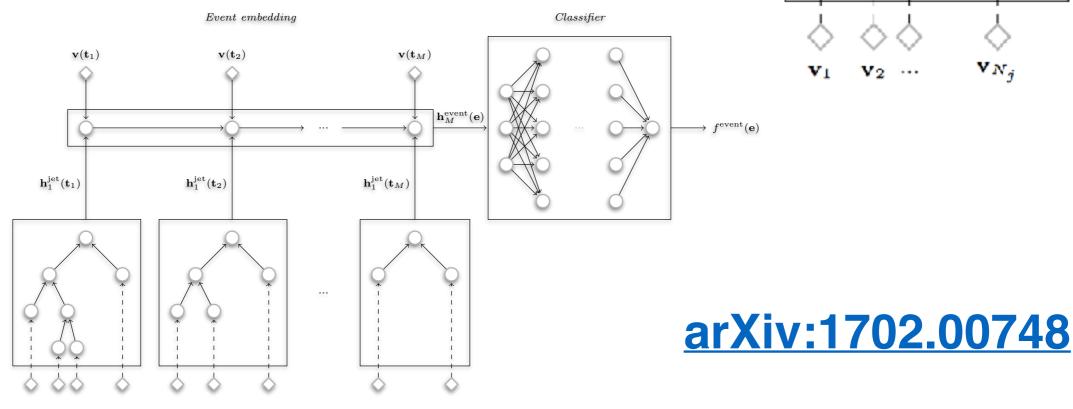




Jet ID with RNNs

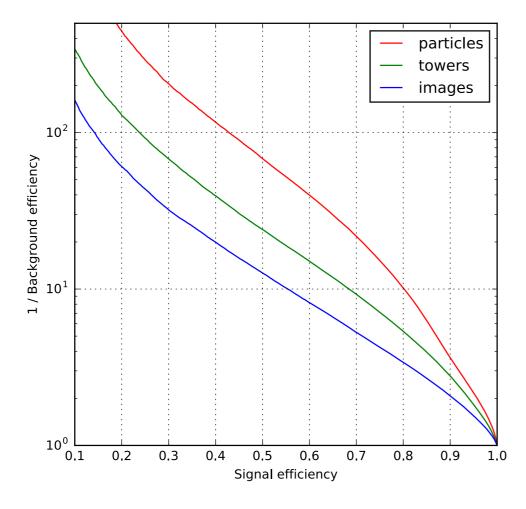
- Computing vision techniques assumes regular arrays of "pixels" as input
- Our detector have often irregular geometry
- We reconstruct particles from decor "pixels"
 - DL can take as input directly the variables
- Recursive NNs are ideal for this task
 - natural order provided by jet algorithms
 - variable #particles/jet can be handled

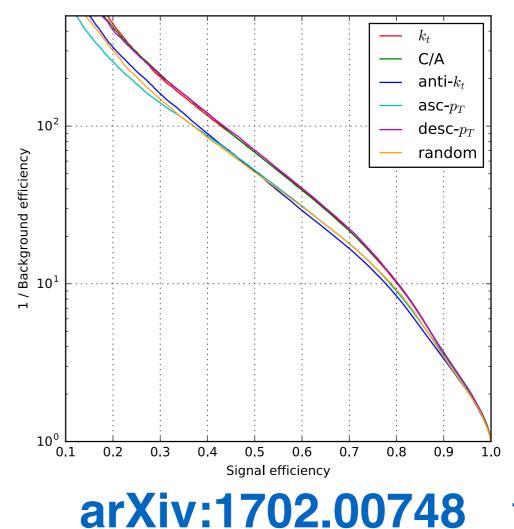




Jet ID with RNNs

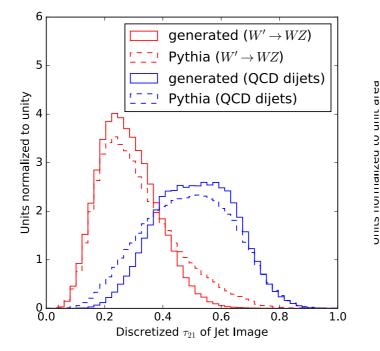
- Better performances using jet constituents rather than jet image (RNN & QCD at work)
- The used jet algorithm matters
- Particles work better than jets (angular resolution matters. That's why you want a granular detector)

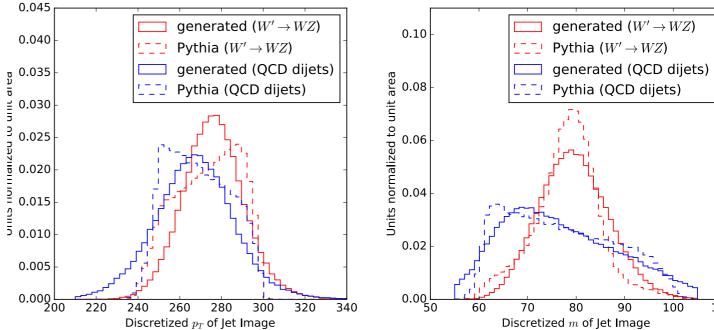




GANs for Jets

- First HEP application of GAN
- See Sofia's talk for more on this topic
- Very promising, but there is work to do
- HYBRIDGAN a combination of the two:
 real images
 Discriminator
 Discriminator
 UCGAN
 FCGAN
 Togan
 Tog

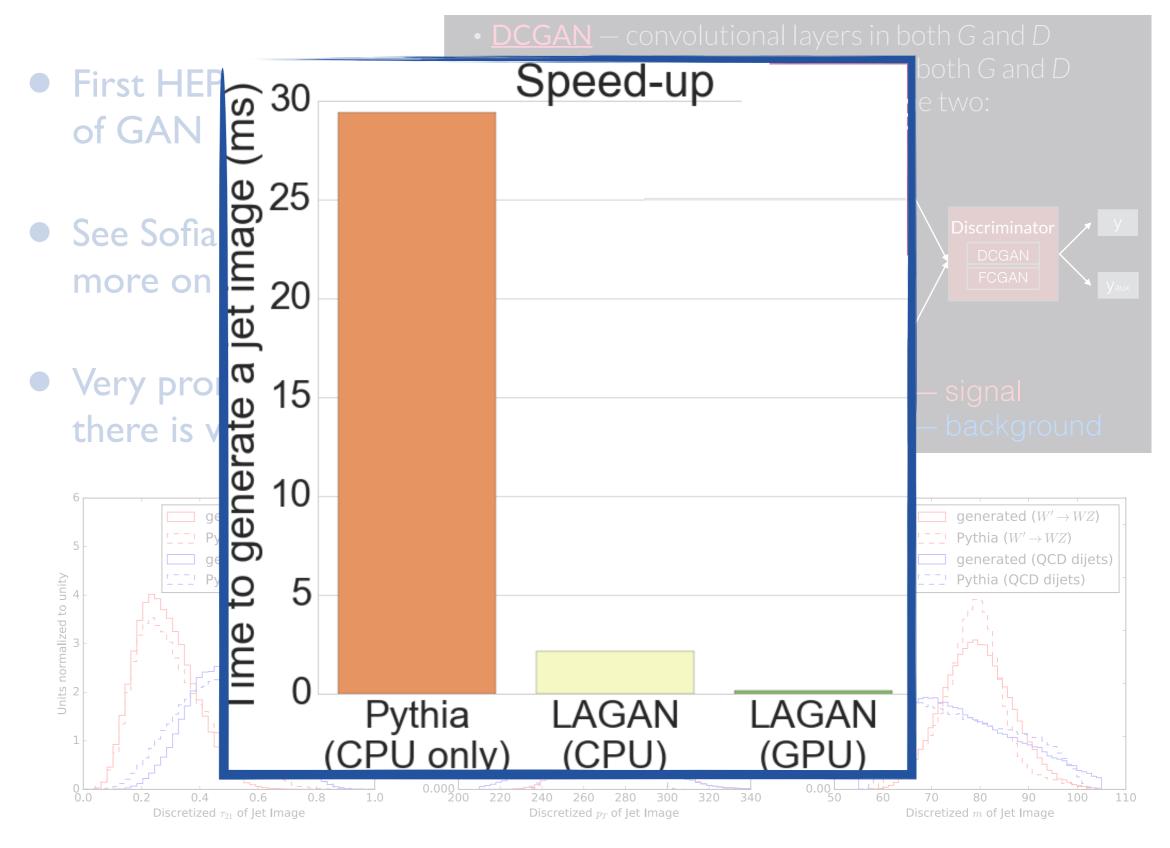




110

- <u>DCGAN</u> convolutional layers in both G and D
- FCGAN fully-connected layers in both G and D

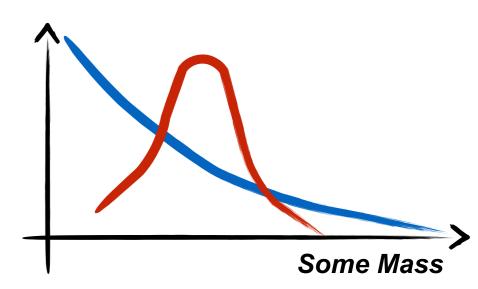
GANs for Jets



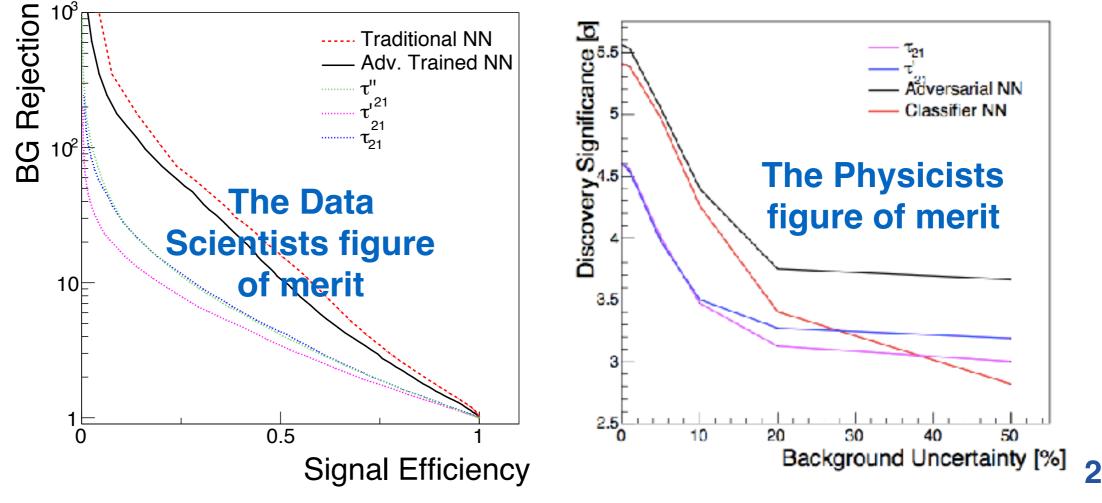
arXiv:1701.0592720

Adversarial Training

- Adversarial training allows us to impose physics-driven conditions to our training
 - Decorrelate DNN score from given physics quantities (as done with BDTs in the past)
 - Look for a (local?) minimum which minimises systematic effects (e.g., data/MC agreement)

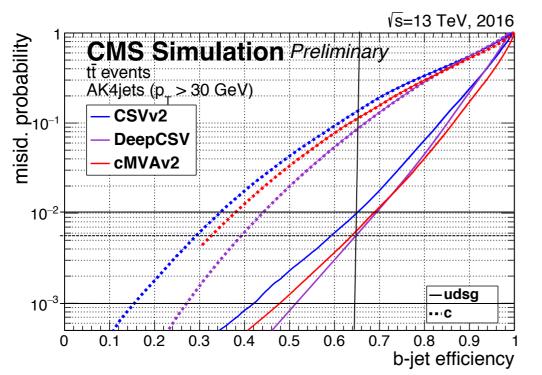


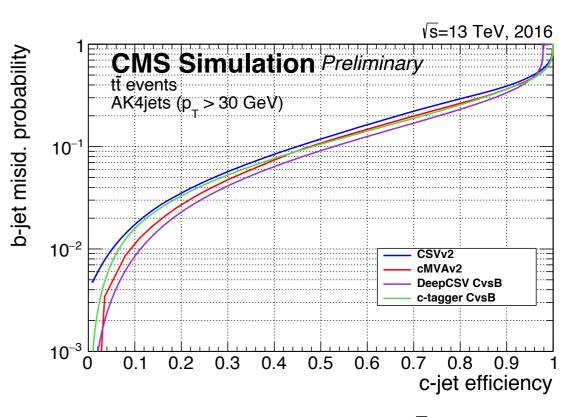
arXiv:1703.03507



DL in real life: b-tagging

- Repeating history: b-tagging is the first "productionready" algorithm that made it to mainstream data analysis usage
- Example from CMS: tagging based on high-level features (previously used in BDTs)





√s=13 TeV, 2016 CMS Simulation Preliminary b-jet misid. probability tī events AK4jets (p₋ > 30 GeV) 10⁻¹ 10⁻² CSVv2 cMVAv2 DeepCSV CvsB c-tagger CvsB 10^{-3} 0.2 0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 c-jet efficiency

DL in real life: b-tagging

category

Sdo

S_{zo}

ΔR

Unrolled RNN

Trắck 1

Track 3

ordered by |Sdo|

Track :

Track 4

Track N

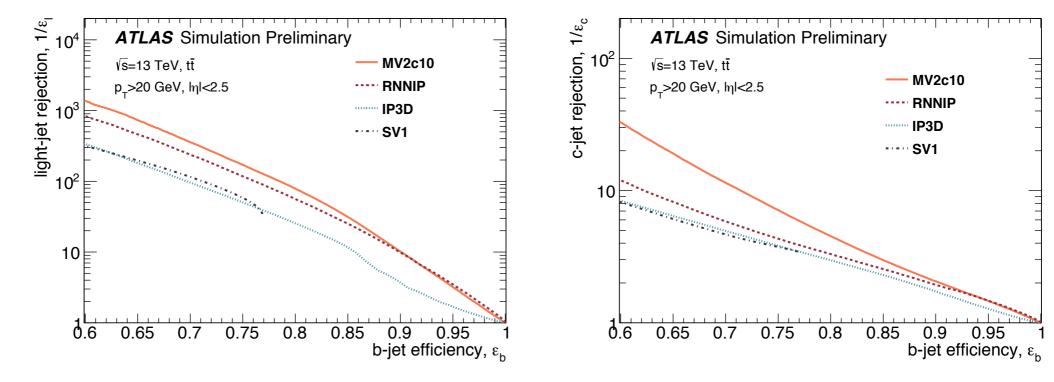
Jet

2D unit vector

Merge

Embed

- MV2 using IP3D still rejects more background for εb < 0.9</p>
- But this uses JetFitter and SV → much more information RNN as input for MV2 is outside the scope of this talk
- But we can imagine replacing IP3D with the RNN



ATL-PHYS-PUB-2017-003

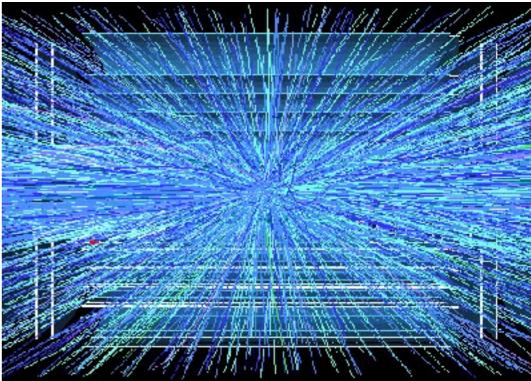
Fully Connected + SoftMax

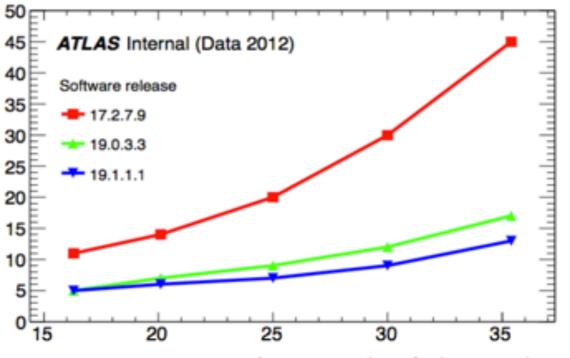
plight

Deep Learning for @HEP future

The challenge ahead

- The evolving conditions of the machine are drifting the experiments to more prohibitive environments (luminosity comes with a cost)
- More (& bigger) events to handle
- More noise from pileup interactions
- Increase in resources will not scale with needs
- Flat (or decreasing?) budget
- (Non linearly) increasing demand
- Need to find better ways to do things
- Problems can be formulated as image detection, where big progresses are happening (see ConvNNs)

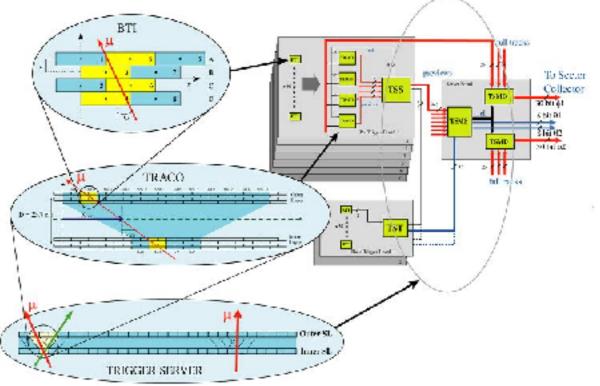


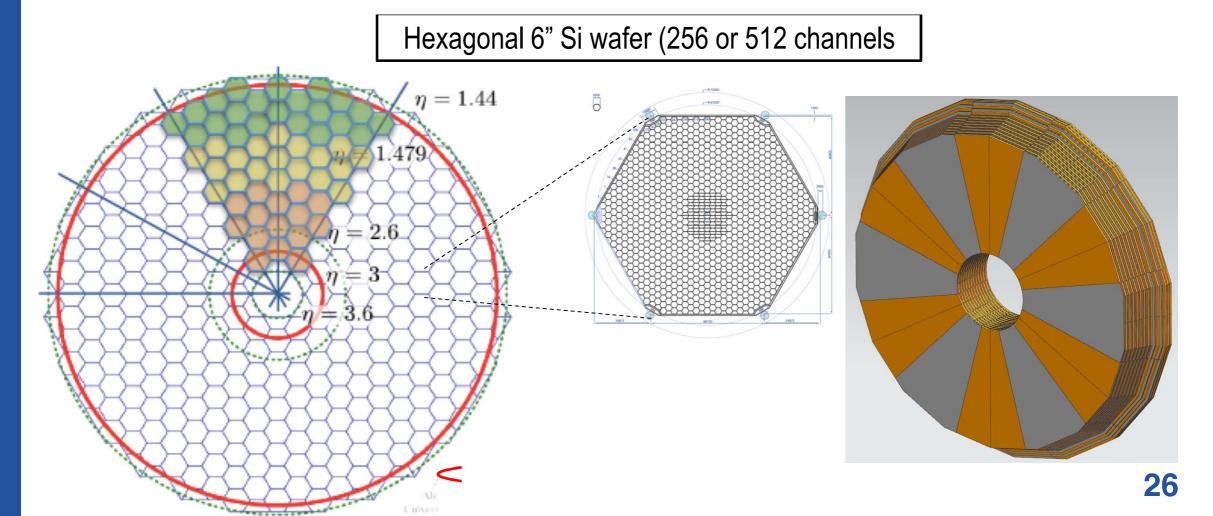


Average number of primary vertices

New instruments

- The High-Luminosity challenges will be faced improving the detector
 - add tracking capability earlier in the game (@LI trigger)
 - improve detector coverage
 - improve detector granularity





New instruments

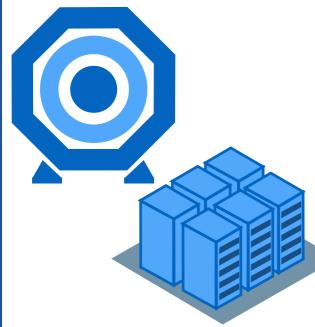
The High-Luminosity challenges will be faced improving the detector

 add tracking capability earlier in the game (@LI trigger)

More resources needed to exploit detector improvements

- heavier reconstruction
- more reconstruction steps
- But budget is flat, so we need a paradigm shift

Uhat DL can do for us



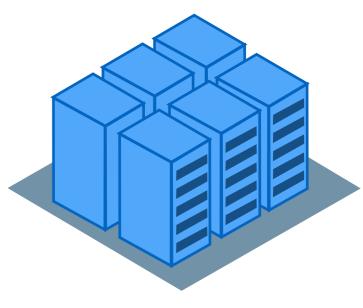
Online Data Taking (real time)

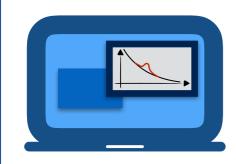
Fast trigger algorithms for topology classification Fast reconstruction algorithms (clustering, tracking, classification)

Monitor detector operation conditions & data quality

Offline event processing (centralised)

Event indexing based on topology classification Fast collision simulation based on generative models Fast reconstruction algorithms (clustering, tracking, classification)

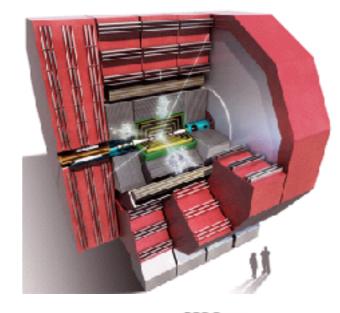


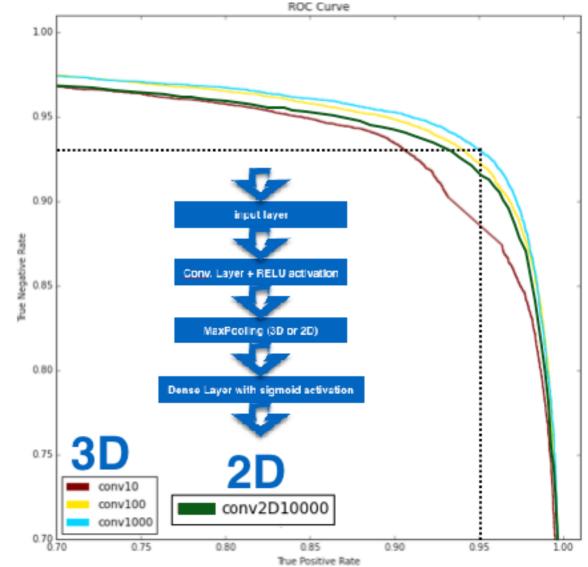


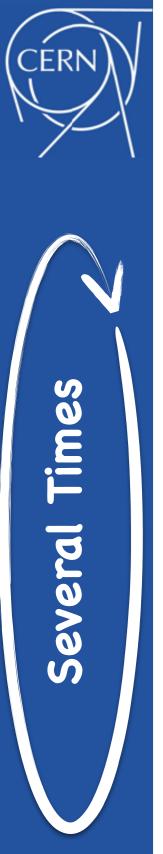
Data analysis (by users)

Particle identification Jet tagging (g vs q vs b vs W/Z vs H vs t) Unsupervised search for new physics as outlier detection

- Using as a benchmark the LCD detector design
- Accessible beyond the boundaries of experimental collaborations (eg, ATLAS+CMS)
- Example of next-generation highlygranular detector
- FullSIM available out of the box
- Defined single-particle benchmark datasets
- pions, electrons, and photons
- Used to train 2D and 3D reconstruction and identification based on ConvNN







Examples: Tracking

Hits Preparation

Seeding

Pattern Recognition

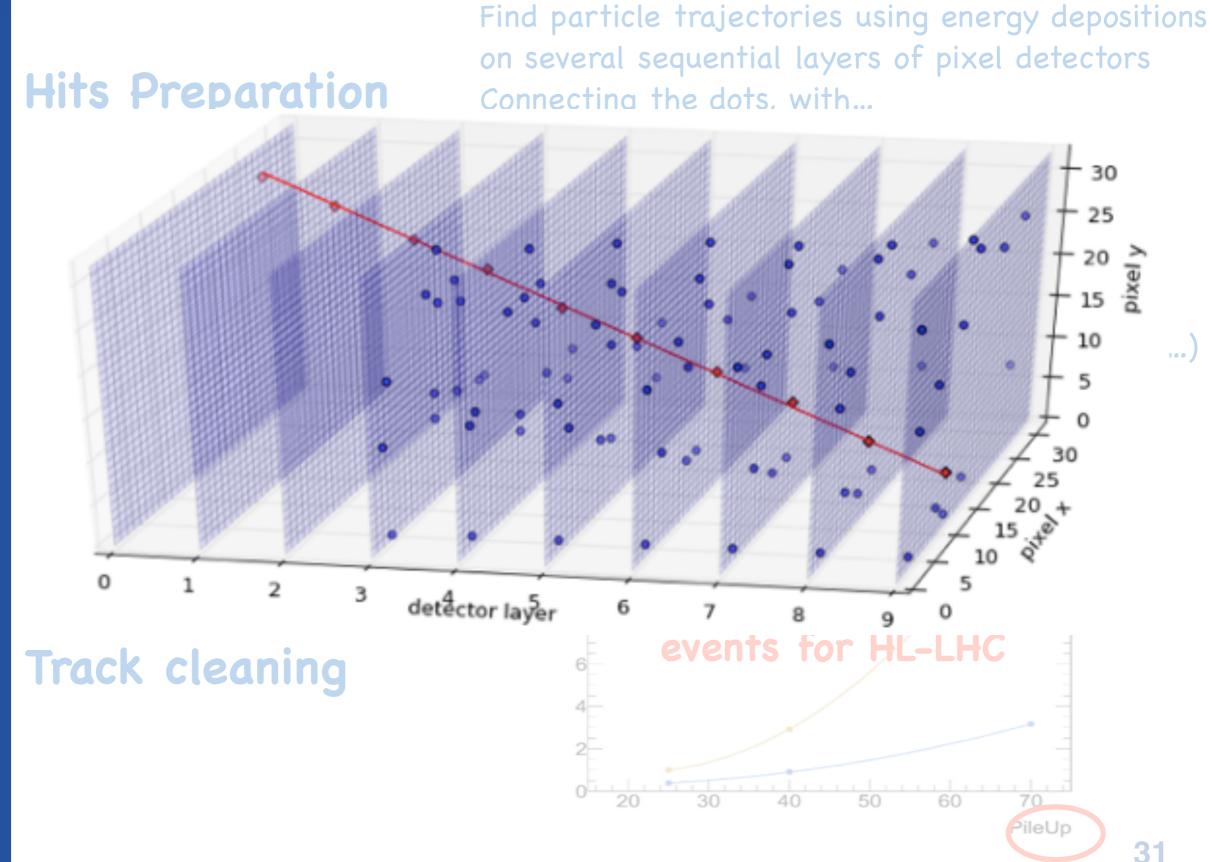
Track Fitting

Track cleaning

Find particle trajectories using energy depositions on several sequential layers of pixel detectors Connecting the dots, with...

- Thousands of particles, each leaving energy depositions on O(10) layers of detectors
- High particle-density regions w/ multiple particles passing through same cluster of energy deposition
- Different kind of "hits" (plain, split, merged, ...)

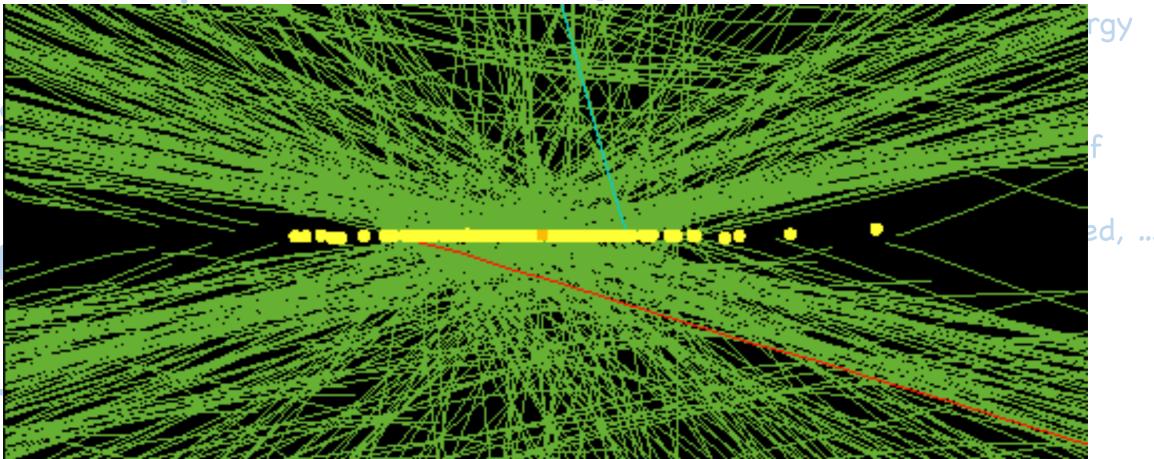
Uhat you want to do



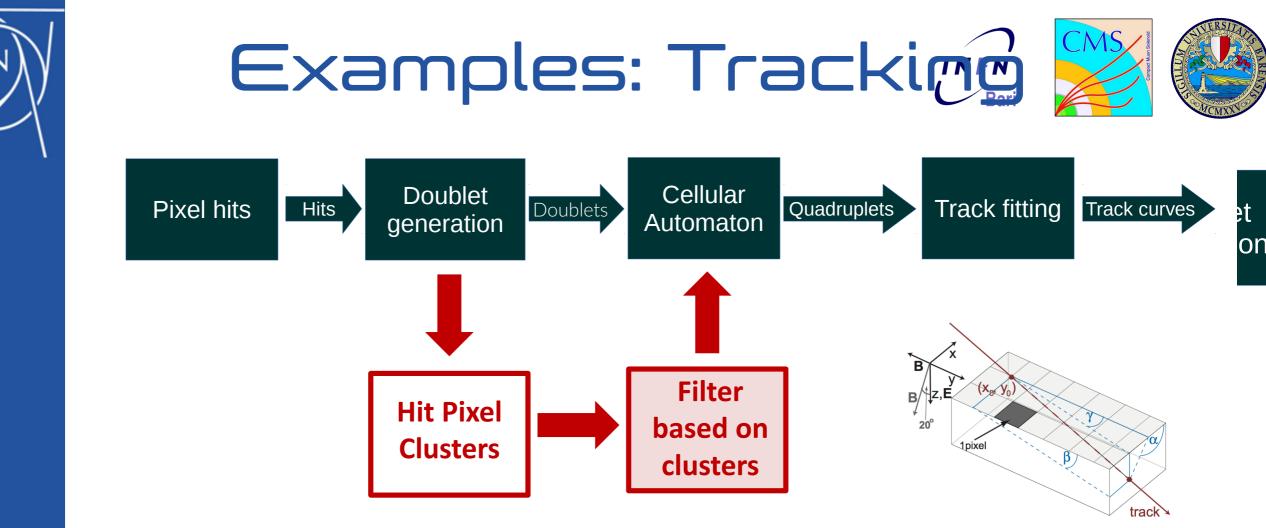
Uhat real life looks like

Find particle trajectories using energy depositions on several sequential layers of pixel detectors Connecting the dots, with...

Hits Preparation

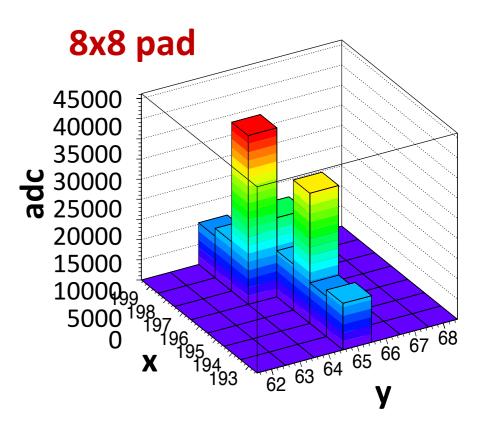


Track cleaning



Represent hits as 8x8 images

- use the deposited energy (ADC counts) as temperature
- Use DNN to decide if a given pair of hits is a good match or a fake



1.0 -

0.8

True Positive Rate 6.0 9.0

0.2

0.0 -

0.0

0.2

0.4

0.6

Examples: Tracking

- Ongoing work with CMS simulations
- Currently exploring possibilities

ROC curve

cnn 2 ROC (area = 0.970240)=

cnn 3 bw ROC (area = 0.900248)

cnn 4 a ROC (area = 0.996432)

cnn_6_bw ROC (area = 0.891261)

0.8

1.0

cnn 5 ROC (area = 0.960581)

0.2

 10^{-4}

- data representation
- network architecture

Bari 1-false,p CNN eff. @ rej 0.99 0.5 0.75 0.9 0 00 0 00 0.38 0.99 cnn_1 0.53 0.99 0.98 0.92 cnn_2 cnn_3_bw 0.99 0.87 0.63 0.28 cnn_4_a 1.0 0.99 0.99 0.91 cnn_5 0.99 0.98 0.89 0.42 0.99 0.85 0.61 0.26 cnn_6_bw cnn_4_a thue dostitive n/_0.91 0.42 cnn 5 First results are extremely promising by **ROC** curve 0.8 rue Positive Rate 70 90 cnn 1 ROC (area = 0.960728) cnn 1 ROC (area = 0.960728)

10-3

 10^{-2}

False Positive Rate

INFN

cnn 2 ROC (area = 0.970240)

cnn 3 bw ROC (area = 0.9002

cnn 4 a ROC (area = 0.99643)

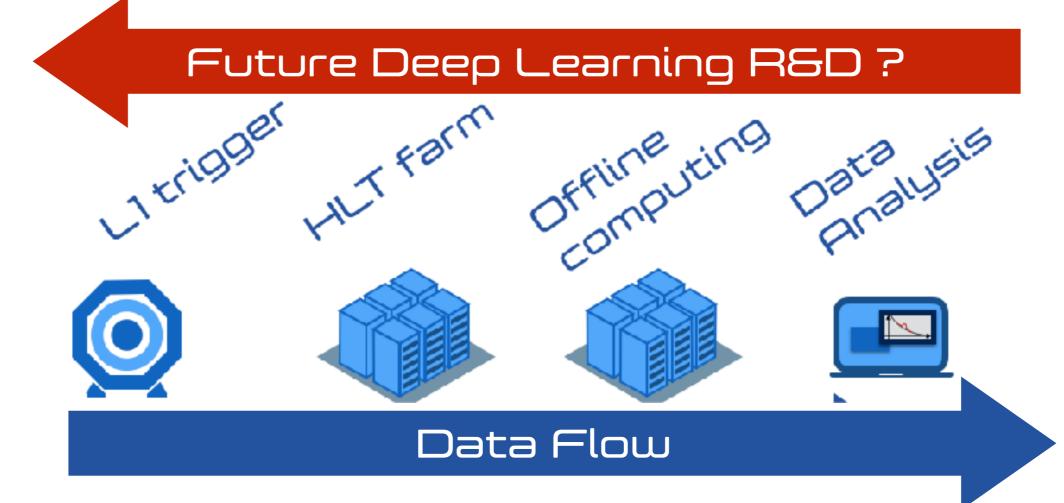
cnn 5 ROC (area = 0.960581)

cnn 6 bw ROC (area = 0.8912

 10^{-1}

Better? Faster? Both?

- We would be extremely happy to have fast DLL algorithms that behave as well as our current offline reconstruction
 - we could move these algorithms earlier in our data flow
 - Benefits downstream of a better triggers
 - more "good events" to write for given resources
 - less events to write for a given number of good events
- Of course, if we could achieve better performances as well



Training: BDTs vs DLs

- People are used to train their own ML algorithm on their laptop
 - BDTs allow to do that
- This promoted the use of BDT to > 50% our data analysis, 100% of the event reconstruction, etc
- To transition to DL, training as to be made user friendly
 - Software is there (Keras, TensorFlow, etc in LHC-physicists-friendly python echo system)
 - We need the hardware (& the competence) to run small (and large) training
- If this becomes part of the central processing workflows, we will certainly need adequate central resources (e.g., a GPU cluster @CERN?)

Inference: BDTs vs DLs

- Offline inference is not an issue (see)
- Online inference comes with constraints
- We are currently running ML@Trigger
 - BDTs at HLT (b-tagging, photon ID) to "clean up" the reconstructed objects (regressions & classifications)
 - BDT at L1 (as look-up tables) to improve energy measurements (low-dimension regressions)
- We want to use DL at trigger for more
 - go back to RAW data
 - use DL to "predict" the reconstruction outcome
 - save time in the trigger
 - improve decision? (i.e., save bandwidth, disk space, etc)
- We need R&D to see how much of this is realistic