Deep Learning In Low
Signal/Background
Environments




Intro |

* Deep neural networks — breakthroughs in a number of classification and
regression problems (e.g. images)

* Physics analysis routinely deals with classification problems

* Non-deep machine learning often used in these cases
(based on high-level expert features)

* Obvious questions: can we improve significantly w/ Deep Learning?
(representation learning?)

* Some attempts in the literature, initially mostly toy but getting more realistic

* To my knowledge, deep learning not yet applied in
published physics analyses

* Need input from data scientists / industry!

* Discussed here: examples from the literature and from the LHC experiments
* Jet Classification (based on images or tracks)
*NAc 2 1TKpP

* Beyond toy studies DISCLAIMER: Not a comprehensive review,
| examples biased towards my interests
M. Floris CERN Openlab Workshop A . P




Low signal/background

Many signals of interests are (relatively) rare
Embedded in events with large number of particles
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Low signal/background

Many signals of interests are (relatively) rare
Embedded in events with large number of particles

Pile-up: within a single “bunch crossing”™ multiple collisions are possible
In run 2 average number of collisions per bunch crossing p: 20 = 50
After the upgrades up to u = 140
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Low signal/background

Many signals of interests are (relatively) rare
Embedded in events with large number of particles

Pile-up: within a single “bunch crossing”™ multiple collisions are possible
In run 2 average number of collisions per bunch crossing p: 20 = 50
After the upgrades up to u = 140

Colliding systems: LHC studies pp, p—Pb, Pb—-Pb collisions
Head-on Pb—Pb collision (5% most central): multiplicity > 200 x pp

Pb-Pb v/ SNN — ‘2.76TeV
run: 137171, 2010-11-09 00:12:13

ALICE rp7 TeV (June 2010)
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What is a jet?

Image from CMS

\ Particle Jet Energy depositions

P (tracks) in calorimeters (towers)

* Hard collisions between protons constituents generate energetic partons (g,9)
* Partons cannot exist as free particles, produce “spray” of particles

* Nature produces “particles”,
experiments measure “tracks” and calorimetric “towers”

* Experimentally: tracks and towers (constituents) clustered by specialized
algorithms to reconstruct jets

* The problem: determine the nature of the object which created the jet
e Several interesting cases (boosted objects, b-jets, quark vs gluon, ...)
e Standard approach: compute (expert) high-level features from constituents

* Possibly combine several features using machine learning


http://cms.web.cern.ch/news/jets-cms-and-determination-their-energy-scale

Jet images
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|dea: treat jets as “images” in n (= f(6)) and ¢, where each pixel is a
calorimeter tower and intensity Is proportional to energy deposition
Single jet iImages are sparse (5-10% of pixels)

Use (almost) standard CV machinery (Deep or Conv NN)

In this paper: boosted W, pixelation mimics detector
de OIivira et al. JHEP 167 2016) 069
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Results from jet images

de Oliveira et al. JHEP 1607 (2016) 069

250<p 1/GeV <300 GeV, 65 < mass/GeV <95
s =13 TeV, Pythia 8
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Deep NN outperform selection
based on physics-inspired features o
Similar approach:

FU”y Connected better than conv Kasieczka et al, arXiv:1701.08784v1

i\ /7 Komiske et al,, JHEP01(2017)110
(SparSIty ' ) Barnard et al, PRD 95, 014018 (2017)
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Results from jet images

1/(Background Efficiency)

50

de Oliveira et al. JHEP 1607 (2016) 069
250<p 1/GeV <300 GeV, 65 < mass/GeV <95

s =13 TeV, Pythia 8
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Deep NN outperform selection
based on physics-inspired features
Fully connected better than conv
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(sparsity?)

Baldi et al, PRD 93, 094034 (2016)

Performance

Signal efficiency
at background

Technique rejection = 10 AUC
No pileup

BDT on derived features 86.5% 95.0%

Deep NN on images 87.8%0.04%) 95.3% (0.02%)
With pileup

BDT on derived features 81.5% 93.2%

Deep NN on images 84.3%0.02%) 94.0% (0.01%)

DNN still performs better when
detector effects (Delphes)
and pile-up are taken into

CERN Openlab Workshop
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Similar approach:
Kasieczka et al, arXiv:1701.08784v1
Komiske et al,, JHEP01(2017)110

Barnard et al, PRD 95, 14018 (2017)



b-jets tagging

* Alternative approach: use array of
constituents instead of images or high level
features

e Allows avoiding pixelation
e Can go even lower-level than jet images
* Well suited for b-jets tagging

* B-hadrons decay after finite length
(ct ~ 500 ym)

* Traditional approach: high level features
based on the identification of secondary
vertices

e Can one use individual tracks as input
and let the ML method find
(better) high level features?

M. Floris >y CERN Openlab Workshop

——3 tracks

------ b hadron

—————— iImpact
parameter

8% secondary
vertex

‘ 7 Xmary vertex

http://bartosik.pp.ua/hep_sketches/btagging

for a study on top tagging using
constituents, see Pearkes et al,
arXiv:1704.02124v1




What is a track?

e Track is an approximately helix trajectory in 3D,
described by

* 5 parameters

* their covariance matrix (15 parameters)

* Physics analysis often uses only momenta
(ot N, P), implicitly assuming a common origin for
all particles

e Secondary vertex finding requires

propagating tracks along their trajectory ¥ beamline

e Standard workflow:

_ _ beamline 0
* Tracks — Vertices — High Level Features
20

L

V4

M. Floris CERN Openlab Workshop



b-jet tagging, Delphes study

Guest et. al, PRD 94, 112002
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Semi-realisitic detector simulation (Delphes)
Uses full info on track parameters + covariance
Tracks or vertices alone under-perform expert features
Track+Vertices or Tracks+Vertices+Expert outperform expert
Various architecture: feed-forward (better), LSTM, Outer recursive
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M. Floris

Jet constituents
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b-jet tagging, ALICE experiment study

Secondary vertices

High-level properties

Jet shapes,
]et pT’ Nconsl

: Fully-connected
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Merge (concatenation)
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! Fully-connected

| 128
ETR

+ Dropout per layer: 0.25 E

Sigmoid neuron
for binary classification

/

Other model properties
 ADAM optimizer

» Loss: binary crossentropy
» Activation function: RelLU

Last neuron is

sigmoid-activated

Full detector simulation, p-Pb collisions
Not “as low-level” as previous study
Several other architectures studied

CERN Openlab Workshop

R

(LSTMs, 2D convolutional networks on jet images, ...)
. Haake for ALICE, IML Workshop

N : 10


https://indico.cern.ch/event/595059/timetable/#20170321.detailed

/ Heavy ion collisions goal: study hot and
. dense QCD matter

(quark gluon plasma — QGP)

Jets lose energy when
traversing the QGP
Different partons —
Different energy loss

Distinguishing heavy quark, light quark and gluon:
— MICrosopic process of energy loss
— Information on QGP

Problem:
classifier trained on pp-like jets = mis-tag Pb-Pb quenched jets”?

M. Floris CERN Openlab Workshop



Jet Shapes results
9= Z

ALICE Preliminary

pp \s=7TeV

Anti-k; charged jets, R = 0.2
40 < p‘Te " < 60 GeV/c

48 ALICE Data

i ¢

||IIII|IIII|IIII|IIII|I

y

HEHEEIIE

Data/MC

NESX Y SNy Y- S )

OO0 O N ey

ooI TTT

Pythia reproduces jet shapes
(e.g. girth) in pp collisions

M. Floris

Shape uncertainty
[JCorrelated uncertainty
@ PYTHIA Perugia 11
~4- PYTHIA Perugia 0
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Jet Shapes results
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(e.g. girth) in pp collisions distinguish? unsuperwsed methods?
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Finding a decay, \c = TIKp

* Some particles identified through their decay
products

* Reconstruction of 2- and 3-prong decays in
heavy ion collisions is challenging: large
combinatorics

* (remember:
several thousand particles/event)

e Example: Ac = Kp
* | oop over all possible triplets
* Find distance of closest approach

* Compute geometrical + Particle ID
quantities (18) )

Primary vertex _ - 4 flight line

e Decide if this is a viable candidate

M. Floris CERN Openlab Workshop



High Level Features classification

"~ MVA Method: | .

-~ BDT ptstet2
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Signal efficiency

Full detector simulation, p-Pb collisions
BDT, based on 18 “high level features”
AUC depends on momentum bin
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High Level Features classification

- MVA Method )
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Full detector simulation, p-Pb collisions
BDT, based on 18 “high level features”
AUC depends on momentum bin
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High Level Features classification

Background rejection
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Invariant Mass pKn (GeV/c?)

Full detector simulation, p-Pb collisions
BDT, based on 18 “high level features”
AUC depends on momentum bin

Invariant mass distribution to judge quality of the selection

M. Floris

Important: avoid “sculpting” a peak in the background
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Deep topologies

TRKO, COVO, PIDO

TRK1, COV1, PID1 FULLY CONNECTED — OUT

TRK2, COV2, PID2

Summer student report
M. Floris CERN Openlab Workshop BN ¢ 15



https://cds.cern.ch/record/2209102

Deep topologies

TRKO, COVO, PIDO

TRK1, COV1, PID1 FULLY CONNECTED — OUT

TRK2, COV2, PID2

1. Fully connected (10 layers)

Summer student report
M. Floris CERN Openlab Workshop BN ¢ 15



https://cds.cern.ch/record/2209102

Deep topologies

TRKO, COVO, PIDO

Subnetwork 0 | |

TRK1, COV1, PID1

Subnetwork 1 —

TRK2, COV2, PID2

Subnetwork 2 >

1. Fully connected (10 layers)
2. Per-track subnetwork (5+5 layers)

M. Floris

CERN Openlab Workshop

Fully-connected
layers OouT

Summer student report
) 15
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Deep topologies

ESDO, COVO, PIDO

y Convolutional Fully-connected
ESD1, COV1, PID1 >< layers R layers

ouT

ESD2, COV2, PID2

1. Fully connected (10 layers)
2. Per-track subnetwork (5+5 layers)
3. Track pairs convolution (2+5 layers)

Summer student report
M. Floris CERN Openlab Workshop R ¢ 15
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Deep topologies

1.

2. Per-track subnetwork (5+5 layers)

ESDO, COVO, PIDO

ESD1, COV1, PID1

ESD2, COV2, PID2

ESDO, COVO, PIDO

ESD1, COV1, PID1

ESD2, COV2, PID2

Convolutional
layers

High-level
— variable
reconstruction

_—

Fully connected (10 layers)

_

3. Track pairs convolution (2+5 layers)

4.

M. Floris

High level tilter
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Fully-connected ouT
layers
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Deep topologies

ESDO, COVO, PIDO

ESD1, COV1, PID1

ESD2, COV2, PID2

ESDO, COVO, PIDO

ESD1, COV1, PID1

ESD2, COV2, PID2

Convolutional
layers

High-level
— variable
reconstruction

_—

1. Fully connected (10 layers)

2. Per-track subnetwork (5+5 layers)
3. Track pairs convolution (2+5 layers)

4. High level filter

M. Floris
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_

3

Fully-connected
layers

—  OUT

None

outperforms
“shallow” methods

Summer student report
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Deep topologies

ESDO, COVO, PIDO

ESD1, COV1, PID1

ESD2, COV2, PID2

ESDO, COVO, PIDO

ESD1, COV1, PID1

ESD2, COV2, PID2

Convolutional
layers

High-level
— variable
reconstruction

_—

1. Fully connected (10 layers)

2. Per-track subnetwork (5+5 layers)
3. Track pairs convolution (2+5 layers)

4. High level filter

_

3

Fully-connected
layers

—  OUT

None

outperforms
“shallow” methods

Best DNN: AUC ~ 0.906 vs 0.920 (but margins for improvement!)

M. Floris
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Outlook: Beyond the toys

* Training data come from Monte Carlo, imperfect description of real data

* Avoiding over-relying on Monte Carlo (domain adaptation, see e.g. here)
e DL requires very large training samples, may get expensive (GANs?)
* Jet images are sparse, some CV technique need to be adapted (e.g. CNN)
o Effect of detector reconstruction and pile-up
* Partially investigated in current studies
* Large backgrounds (from pp pile-up or heavy ion):
* Fake jets or spurious constituents attached to jets

* Fluctuations in the jet background = smearing in jet energy

* Use DL for regression to handle backgrounds?
e Heavy ion specific:
* Training based on pp distributions, jets modified in Pb-Pb
* Semi-supervised or unsupervised approaches? Domain adaptation?

* Aggressive classification may result in “background sculpting”, serious issue
for decay studies (Adversarial decorrelation? see e.g. here)

M. Floris CERN Openlab Workshop



https://indico.cern.ch/event/506145/contributions/2132947/attachments/1258258/1858421/pseyfert.pdf
https://indico.cern.ch/event/595059/contributions/2497380/attachments/1431792/2199760/2017.03.22_IML.pdf

Summary

* Deep learning methods being investigated in the HEP community for various
classification problems

* |nitial performance promising
e Going deep by itself seems to improve some problems
e Symmetries and peculiarities of physics datasets not yet fully exploited

* (see also arxiv:1702.00748)

* Expert knowledge leads to gains also when combined with deep methods
* Some real-life issues to be addressed (studies ongoing)

* Infrastructure for large-scale application of deep-learning (GPUs?)

* Will surely benefit from collaboration with industry!

Additional links:
IML. Workshop

IML Meeting on Deep Learning

DS@HEP Series (2015, 2016, 2017)
M. Floris £ 7% CERN Openlab Workshop R ¢ 17



https://arxiv.org/pdf/1702.00748.pdf

Sackup
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Angular coverage

lmage from here

Angular coverage of the detectors, typically expressed as a function of
azimuthal angle ¢ and pseudorapidity n

=—ln-tan 9 -
n= _ 2 )

M. Floris s, ‘ CERN Openlab Workshop


https://cornellmath.wordpress.com/2010/09/21/my-last-lhc-status-update/

Performance compared to non-ML
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based method
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b-jet efficiency

The present ML-assisted tagging method is very promising,

compared to conventional method

— mistagging efficiency lower for c- and udsg-jets

— mistagging efficiencies rise less steep when considering higher b-jet
tagging efficiency

R. Haake for ALICE, IML Workshop
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https://indico.cern.ch/event/595059/timetable/#20170321.detailed

Particle Identification
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