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Intro
• Deep neural networks → breakthroughs in a number of classification and 

regression problems (e.g. images)


• Physics analysis routinely deals with classification problems


• Non-deep machine learning often used in these cases  
(based on high-level expert features)


• Obvious questions: can we improve significantly w/ Deep Learning?
(representation learning?)


• Some attempts in the literature, initially mostly toy but getting more realistic


• To my knowledge, deep learning not yet applied in  
published physics analyses 


• Need input from data scientists / industry!


• Discussed here: examples from the literature and from the LHC experiments


• Jet Classification (based on images or tracks)


• ΛC → π K p


• Beyond toy studies
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DISCLAIMER: Not a  comprehensive review,  
examples biased towards my interests 
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Low signal/background
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Many signals of interests are (relatively) rare 
Embedded in events with large number of particles

pp Pb-Pb 
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Low signal/background

3

Many signals of interests are (relatively) rare 
Embedded in events with large number of particles

pp Pb-Pb 

Pile-up: within a single “bunch crossing” multiple collisions are possible 
In run 2 average number of collisions per bunch crossing μ: 20 → 50 

After the upgrades up to μ = 140

Colliding systems: LHC studies pp, p–Pb, Pb–Pb collisions 
Head-on Pb–Pb collision (5% most central): multiplicity > 200 x pp 



What is a jet?
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Image from CMS

(tracks) (towers)

• Hard collisions between protons constituents generate energetic partons (q,g)

• Partons cannot exist as free particles, produce “spray” of particles 
• Nature produces “particles”, 

experiments measure “tracks” and calorimetric “towers” 

• Experimentally: tracks and towers (constituents) clustered by specialized 

algorithms to reconstruct jets

• The problem: determine the nature of the object which created the jet 

• Several interesting cases (boosted objects, b-jets, quark vs gluon, …) 

• Standard approach: compute (expert) high-level features from constituents

• Possibly combine several features using machine learning

http://cms.web.cern.ch/news/jets-cms-and-determination-their-energy-scale
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Jet images
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Idea: treat jets as “images” in η (= f(θ)) and φ, where each pixel is a 
calorimeter tower and intensity is proportional to energy deposition 

Single jet images are sparse (5-10% of pixels) 
Use (almost) standard CV machinery (Deep or Conv NN) 

In this paper: boosted W, pixelation mimics detector
de Oliveira et al. JHEP 1607 (2016) 069 
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Results from jet images
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Deep NN outperform selection 
based on physics-inspired features 
Fully connected better than conv 

(sparsity?) 

Similar approach:
Kasieczka et al, arXiv:1701.08784v1

Komiske et al,. JHEP01(2017)110
Barnard et al, PRD 95, 014018 (2017)

de Oliveira et al. JHEP 1607 (2016) 069 
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Results from jet images

6

Deep NN outperform selection 
based on physics-inspired features 
Fully connected better than conv 

(sparsity?) 

Similar approach:
Kasieczka et al, arXiv:1701.08784v1

Komiske et al,. JHEP01(2017)110
Barnard et al, PRD 95, 014018 (2017)

de Oliveira et al. JHEP 1607 (2016) 069 Baldi et al, PRD 93, 094034 (2016) 

DNN still performs better when 
detector effects (Delphes) 
and pile-up are taken into 

account
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b-jets tagging
• Alternative approach: use array of 

constituents instead of images or high level 
features


• Allows avoiding pixelation


• Can go even lower-level than jet images


• Well suited for b-jets tagging


• B-hadrons decay after finite length  
(cτ ~ 500 μm)


• Traditional approach: high level features 
based on the identification of secondary 
vertices


• Can one use individual tracks as input 
and let the ML method find  
(better) high level features? 
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for a study on top tagging using 
constituents, see Pearkes et al, 

arXiv:1704.02124v1
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What is a track?

• Track is an approximately helix trajectory in 3D, 
described by 


• 5 parameters 


• their covariance matrix (15 parameters)


• Physics analysis often uses only momenta  
(pT, η, φ), implicitly assuming a common origin for 
all particles


• Secondary vertex finding requires  
propagating  tracks along their trajectory 


• Standard workflow:


• Tracks → Vertices → High Level Features

8
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b-jet tagging, Delphes study
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Guest et. al, PRD 94, 112002

Semi-realisitic detector simulation (Delphes)  
Uses full info on track parameters + covariance 

Tracks or vertices alone under-perform expert features 
Track+Vertices or Tracks+Vertices+Expert outperform expert 

Various architecture: feed-forward (better), LSTM, Outer recursive
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b-jet tagging, ALICE experiment study
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Full detector simulation, p-Pb collisions 
Not “as low-level” as previous study 
Several other architectures studied  

(LSTMs, 2D convolutional networks on jet images, …)
R. Haake for ALICE, IML Workshop

https://indico.cern.ch/event/595059/timetable/#20170321.detailed
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Heavy ions issues: a primer on jet quenching
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Heavy ion collisions goal: study hot and 
dense QCD matter  

(quark gluon plasma – QGP)

Jets lose energy when 
traversing the QGP 

Different partons → 
Different energy loss

Distinguishing heavy quark, light quark and gluon: 
→ microsopic process of energy loss 
→ Information on QGP 

Problem:  
classifier trained on pp-like jets → mis-tag Pb-Pb quenched jets?
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Jet Shapes, results
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Pythia reproduces jet shapes 
(e.g. girth) in pp collisions
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Jet Shapes, results
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Pythia reproduces jet shapes 
(e.g. girth) in pp collisions

Shapes change in Pb-Pb,      
more “quark like” 

Different suppression of q and g? 
Modification of fragmentation? 

Can higher-dimensional data still 
distinguish? unsupervised methods?
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Finding a decay, ΛC → πKp

• Some particles identified through their decay 

products


• Reconstruction of 2- and 3-prong decays in 
heavy ion collisions is challenging: large 
combinatorics 

• (remember:  
several thousand particles/event)


• Example: ΛC → πKp


• Loop over all possible triplets


• Find distance of closest approach


• Compute geometrical + Particle ID 
quantities (18)


• Decide if this is a viable candidate
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https://www.flickr.com/photos/mayaevening/138372058
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High Level Features classification
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Full detector simulation, p-Pb collisions 
BDT, based on 18 “high level features” 

AUC depends on momentum bin
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High Level Features classification
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Full detector simulation, p-Pb collisions 
BDT, based on 18 “high level features” 

AUC depends on momentum bin
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Invariant mass distribution to judge quality of the selection  
Important: avoid “sculpting” a peak in the background
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FULLY CONNECTED

Deep topologies

15
Summer student report

https://cds.cern.ch/record/2209102
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1. Fully connected (10 layers)
2. Per-track subnetwork (5+5 layers)

Deep topologies

15
Summer student report

https://cds.cern.ch/record/2209102
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1. Fully connected (10 layers)
2. Per-track subnetwork (5+5 layers)
3. Track pairs convolution (2+5 layers)

Deep topologies

15
Summer student report

https://cds.cern.ch/record/2209102
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1. Fully connected (10 layers)
2. Per-track subnetwork (5+5 layers)
3. Track pairs convolution (2+5 layers)
4. High level filter

Deep topologies

15
Summer student report

https://cds.cern.ch/record/2209102
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1. Fully connected (10 layers)
2. Per-track subnetwork (5+5 layers)
3. Track pairs convolution (2+5 layers)
4. High level filter

Deep topologies

15

None  
outperforms  

“shallow” methods

Summer student report

https://cds.cern.ch/record/2209102
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1. Fully connected (10 layers)
2. Per-track subnetwork (5+5 layers)
3. Track pairs convolution (2+5 layers)
4. High level filter

Deep topologies

15

None  
outperforms  

“shallow” methods

Summer student report
Best DNN: AUC ~ 0.906 vs 0.920 (but margins for improvement!) 

https://cds.cern.ch/record/2209102
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Outlook: Beyond the toys
• Training data come from Monte Carlo, imperfect description of real data


• Avoiding over-relying on Monte Carlo (domain adaptation, see e.g. here)


• DL requires very large training samples, may get expensive (GANs?)


• Jet images are sparse, some CV technique need to be adapted (e.g. CNN)


• Effect of detector reconstruction and pile-up 

• Partially investigated in current studies


• Large backgrounds (from pp pile-up or heavy ion):


• Fake jets or spurious constituents attached to jets


• Fluctuations in the jet background ⇒ smearing in jet energy


• Use DL for regression to handle backgrounds?


• Heavy ion specific: 


• Training based on pp distributions, jets modified in Pb-Pb


• Semi-supervised or unsupervised approaches? Domain adaptation?


• Aggressive classification may result in “background sculpting”, serious issue 
for decay studies (Adversarial decorrelation? see e.g. here)
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https://indico.cern.ch/event/506145/contributions/2132947/attachments/1258258/1858421/pseyfert.pdf
https://indico.cern.ch/event/595059/contributions/2497380/attachments/1431792/2199760/2017.03.22_IML.pdf
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Summary
• Deep learning methods being investigated in the HEP community for various 

classification problems


• Initial performance promising 


• Going deep by itself seems to improve some problems


• Symmetries and peculiarities of physics datasets not yet fully exploited


• (see also arxiv:1702.00748) 


• Expert knowledge leads to gains also when combined with deep methods


• Some real-life issues to be addressed (studies ongoing)


• Infrastructure for large-scale application of deep-learning (GPUs?)


• Will surely benefit from collaboration with industry!
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IML Meeting on Deep Learning

IML Workshop 

DS@HEP Series (2015, 2016, 2017)

Additional links:

https://arxiv.org/pdf/1702.00748.pdf


Backup
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Angular coverage
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Angular coverage of the detectors, typically expressed as a function of 
azimuthal angle φ and pseudorapidity η

Image from here

https://cornellmath.wordpress.com/2010/09/21/my-last-lhc-status-update/
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Performance compared to non-ML
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R. Haake for ALICE, IML Workshop

https://indico.cern.ch/event/595059/timetable/#20170321.detailed


Identity of daughter particles not directly known  
Particle identification (PID, many different techniques) 

correlates with particles identity

HMPID

ITS

TPC

TOF

Particle Identification
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