



Deep Learning In Low Signal/Background Environments

Michele Floris (CERN) OpenLab ML&DA workshop April 27, 2017



- Deep neural networks → breakthroughs in a number of classification and regression problems (e.g. images)
- Physics analysis routinely deals with classification problems
- Non-deep machine learning often used in these cases (based on high-level expert features)
- Obvious questions: can we improve significantly w/ Deep Learning? (representation learning?)
- Some attempts in the literature, initially mostly toy but getting more realistic
  - To my knowledge, deep learning not yet applied in published physics analyses
  - Need input from data scientists / industry!
- Discussed here: examples from the literature and from the LHC experiments
  - Jet Classification (based on images or tracks)
  - $\Lambda_c \rightarrow \pi \text{ K p}$
  - Beyond toy studies

**DISCLAIMER:** Not a comprehensive review, examples biased towards my interests

Intro

# Low signal/background



#### Many **signals of interests** are (relatively) **rare** Embedded in events with **large number of particles**

### Low signal/background



Many **signals of interests** are (relatively) **rare** Embedded in events with **large number of particles** 

**Pile-up:** within a single "bunch crossing" multiple collisions are possible In run 2 average number of collisions per bunch crossing  $\mu$ : 20  $\rightarrow$  50 After the upgrades up to  $\mu = 140$ 

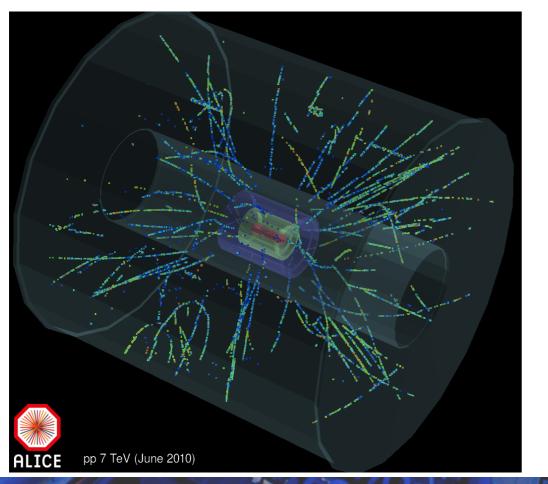
# Low signal/background

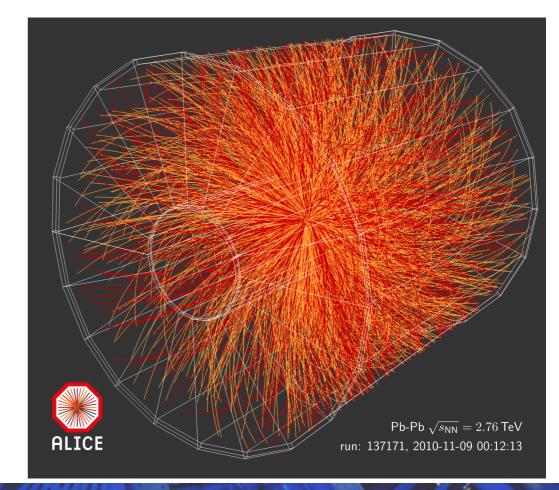


Many **signals of interests** are (relatively) **rare** Embedded in events with **large number of particles** 

**Pile-up:** within a single "bunch crossing" multiple collisions are possible In run 2 average number of collisions per bunch crossing  $\mu$ : 20  $\rightarrow$  50 After the upgrades up to  $\mu = 140$ 

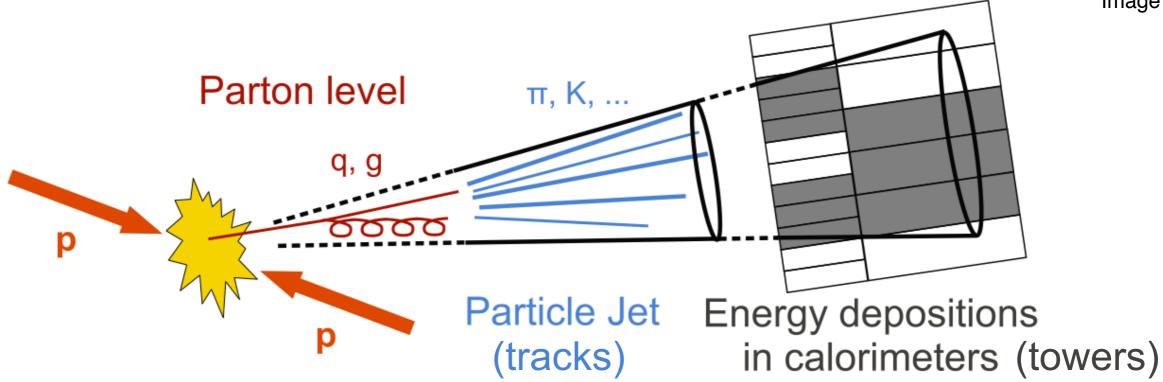
**Colliding systems**: LHC studies pp, p–Pb, Pb–Pb collisions Head-on Pb–Pb collision (5% most central): **multiplicity > 200 x pp** 





# What is a jet?

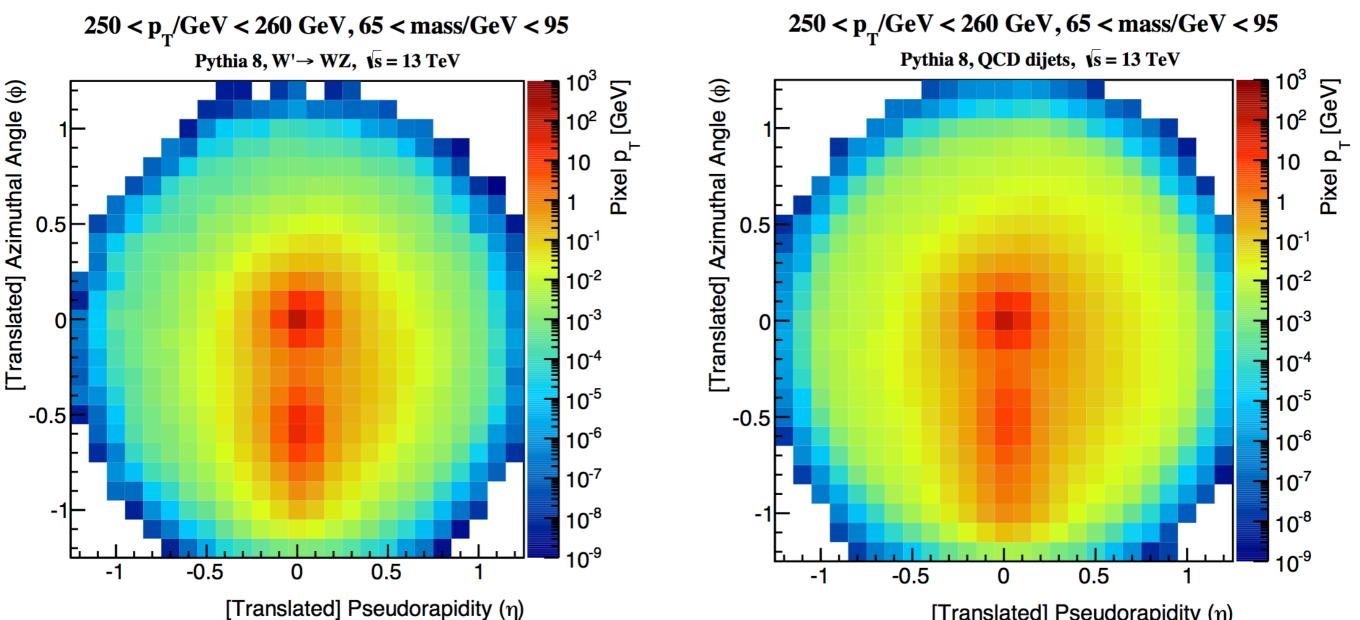




- Hard collisions between protons constituents generate energetic partons (q,g)
- Partons cannot exist as free particles, produce "spray" of particles
- Nature produces "particles", experiments measure "tracks" and calorimetric "towers"
- Experimentally: tracks and towers (constituents) clustered by specialized algorithms to reconstruct jets
- The problem: determine the nature of the object which created the jet
  - Several interesting cases (boosted objects, b-jets, quark vs gluon, ...)
- Standard approach: compute (expert) high-level features from constituents
  - Possibly combine several features using machine learning

### Jet images



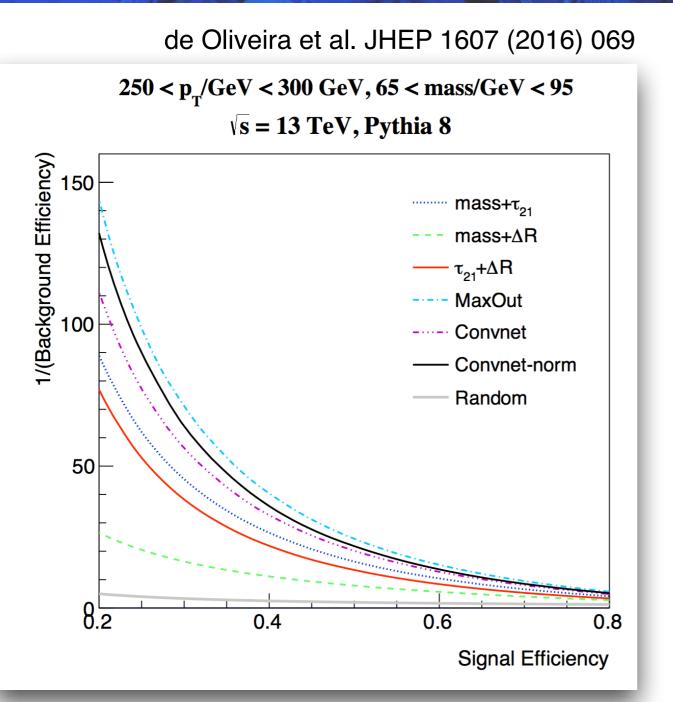


[Translated] Pseudorapidity (n)

Idea: treat jets as "images" in  $\eta (= f(\theta))$  and  $\phi$ , where each pixel is a calorimeter tower and intensity is proportional to energy deposition Single jet images are **sparse** (**5-10%** of pixels) Use (almost) standard CV machinery (**Deep** or **Conv NN**) In this paper: boosted W, pixelation mimics detector de Oliveira et al. JHEP 1607 (2016) 069

# Results from jet images



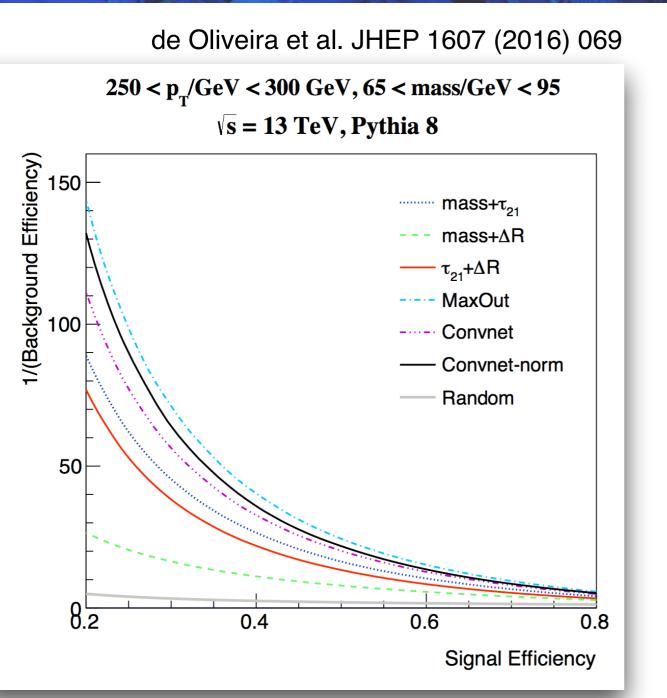


Deep NN **outperform** selection based on physics-inspired features Fully connected better than conv (sparsity?)

Similar approach: Kasieczka et al, arXiv:1701.08784v1 Komiske et al, JHEP01(2017)110 Barnard et al, PRD 95, 014018 (2017)

# **Results from jet images**





Deep NN **outperform** selection based on physics-inspired features Fully connected better than conv (sparsity?)

|                         | Performance                                            |                     |
|-------------------------|--------------------------------------------------------|---------------------|
| Technique               | Signal efficiency<br>at background<br>rejection $= 10$ | AUC                 |
|                         | No pileup                                              |                     |
| BDT on derived features | 86.5%                                                  | 95.0%               |
| Deep NN on images       | $87.8\%_{(0.04\%)}$                                    | $95.3\%_{(0.02\%)}$ |

Baldi et al, PRD 93, 094034 (2016)

With pileup

93.2%

 $94.0\%_{(0.01\%)}$ 

DNN still performs better when detector effects (Delphes) and pile-up are taken into account

81.5%

 $84.3\%_{(0.02\%)}$ 

BDT on derived features

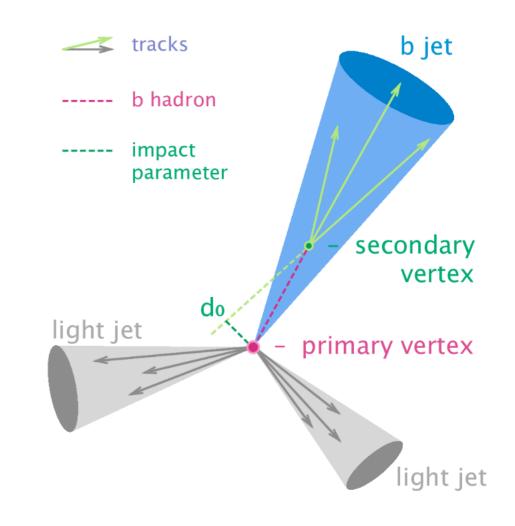
Deep NN on images

Similar approach: Kasieczka et al, arXiv:1701.08784v1 Komiske et al, JHEP01(2017)110 Barnard et al, PRD 95, 014018 (2017)

**M.** Floris

# b-jets tagging

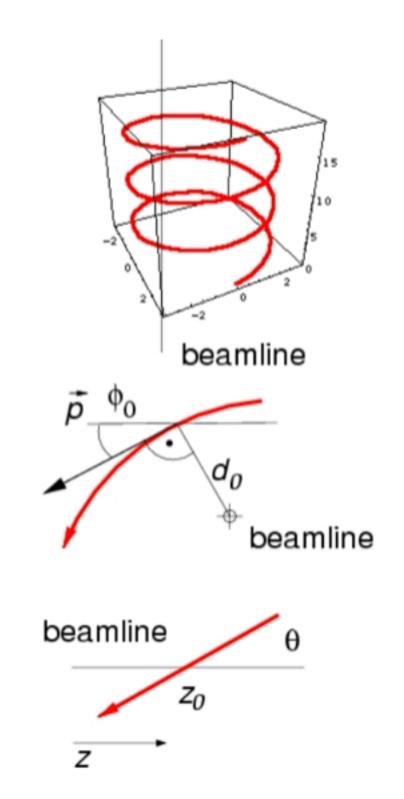
- Alternative approach: use array of constituents instead of images or high level features
  - Allows avoiding pixelation
  - Can go even lower-level than jet images
- Well suited for **b-jets tagging** 
  - B-hadrons decay after finite length  $(c\tau \sim 500 \ \mu \text{m})$
  - Traditional approach: high level features based on the identification of secondary vertices
  - Can one use individual tracks as input and let the ML method find (better) high level features?



http://bartosik.pp.ua/hep\_sketches/btagging

for a study on top tagging using constituents, see Pearkes et al, arXiv:1704.02124v1

- Track is an approximately helix trajectory in 3D, described by
  - 5 parameters
  - their covariance matrix (15 parameters)
- Physics analysis often uses only momenta (p<sub>T</sub>, η, φ), implicitly assuming a common origin for all particles
- Secondary vertex finding requires
  propagating tracks along their trajectory
- Standard workflow:
  - Tracks → Vertices → High Level Features

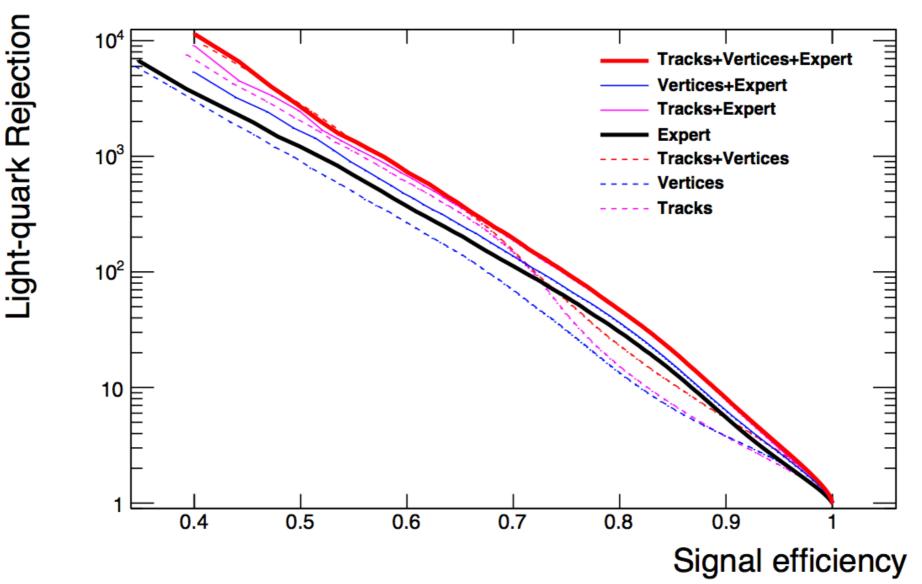




## b-jet tagging, Delphes study



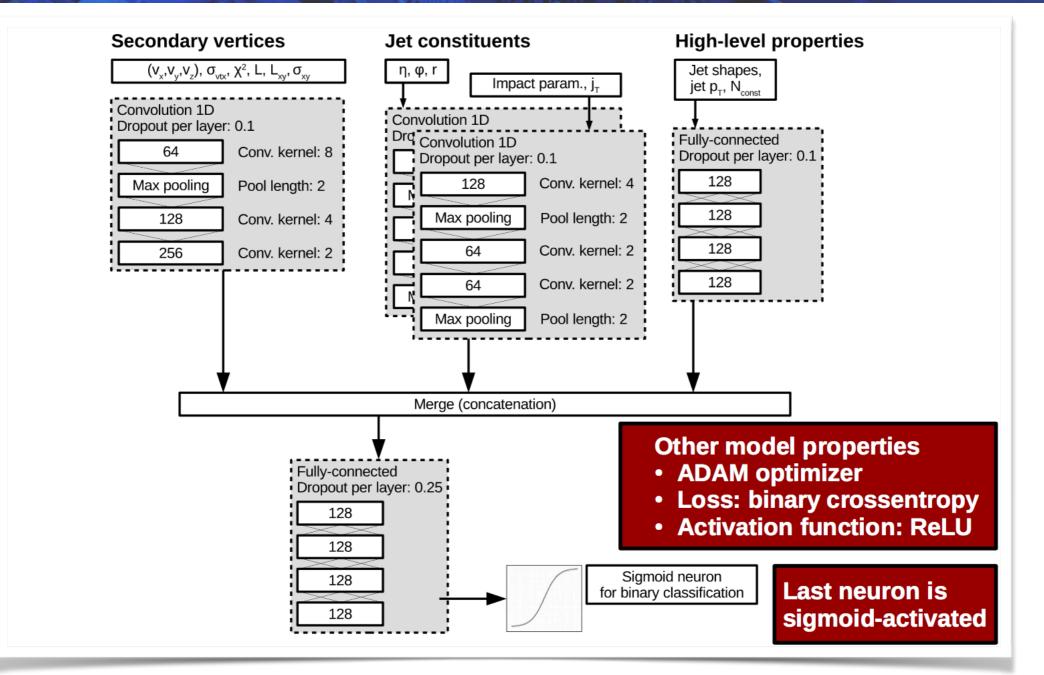
Guest et. al, PRD 94, 112002



Semi-realisitic **detector simulation** (Delphes) Uses full info on **track parameters + covariance** Tracks or vertices alone under-perform expert features Track+Vertices or Tracks+Vertices+Expert **outperform expert** Various architecture: **feed-forward** (better), LSTM, Outer recursive

# b-jet tagging, ALICE experiment study



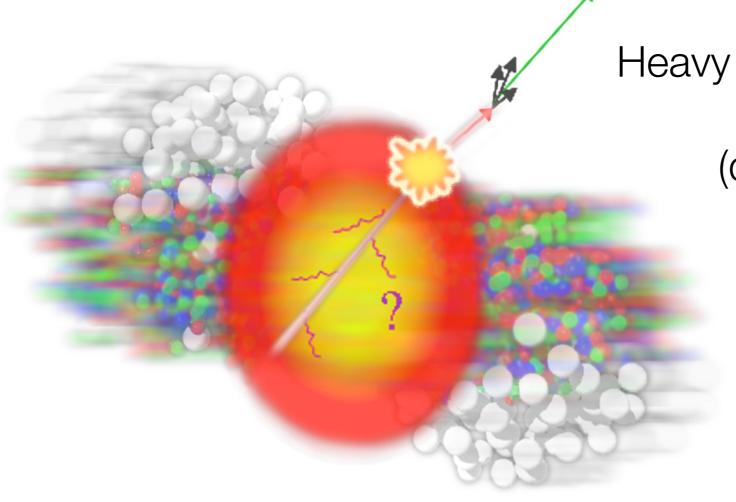


Full detector simulation, p-Pb collisions Not "as low-level" as previous study Several other architectures studied (LSTMs, 2D convolutional networks on jet images, …)

R. Haake for ALICE, IML Workshop

### Heavy ions issues: a primer on jet quenching





Heavy ion collisions goal: study hot and dense QCD matter (quark gluon plasma – **QGP**)

> Jets lose energy when traversing the QGP Different partons → Different energy loss

Distinguishing heavy quark, light quark and gluon:

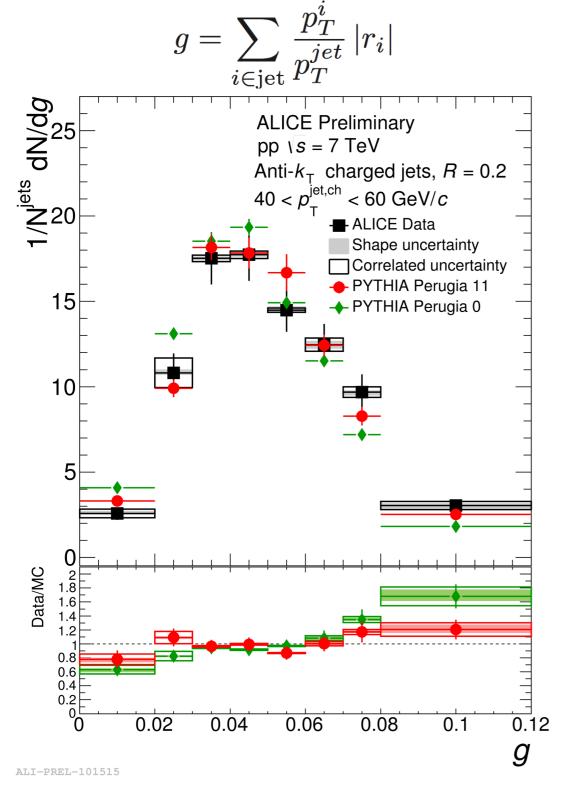
- → microsopic process of energy loss
- → Information on QGP

#### **Problem:**

classifier trained on **pp-like** jets → **mis-tag Pb-Pb** quenched jets?

# Jet Shapes, results



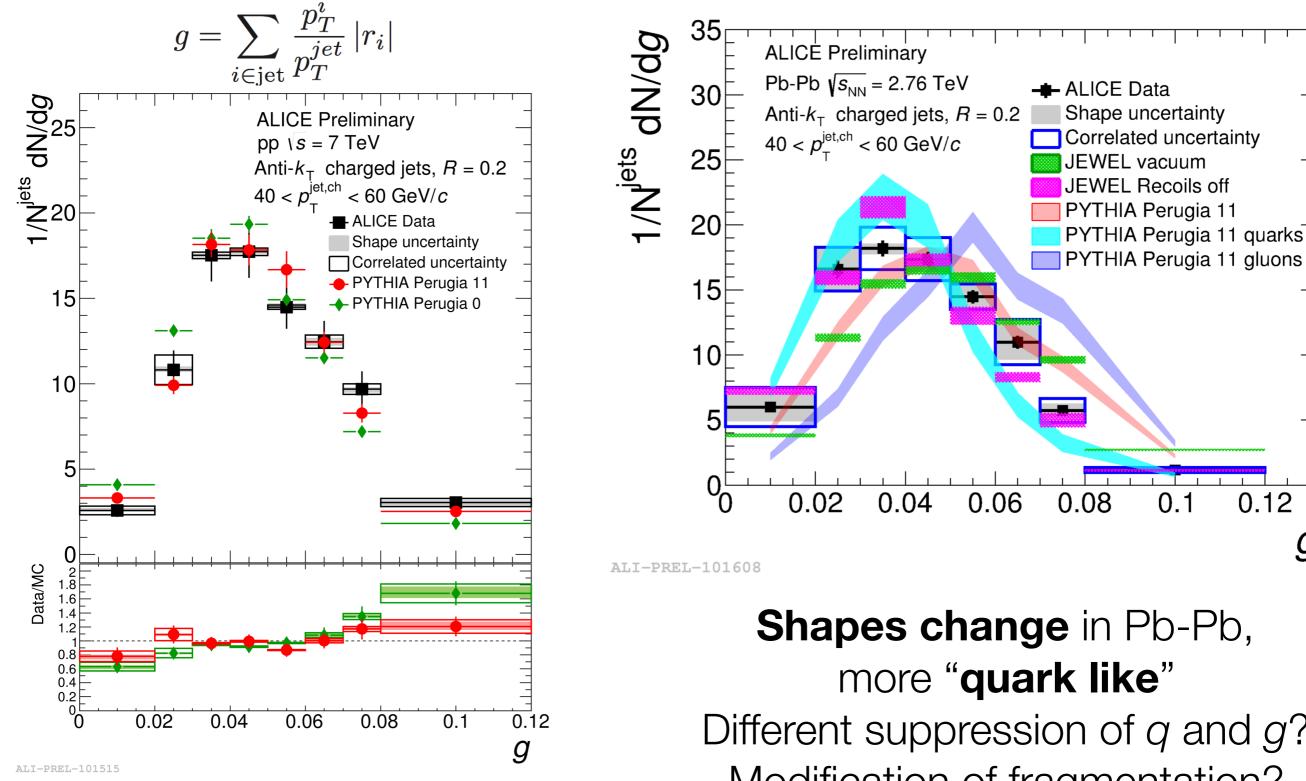


# Pythia reproduces jet shapes (e.g. girth) in pp collisions

**M.** Floris

### Jet Shapes, results





#### Pythia reproduces jet shapes (e.g. girth) in pp collisions

### Shapes change in Pb-Pb, more "quark like"

Different suppression of *q* and *g*? Modification of fragmentation? Can higher-dimensional data still distinguish? **unsupervised** methods?

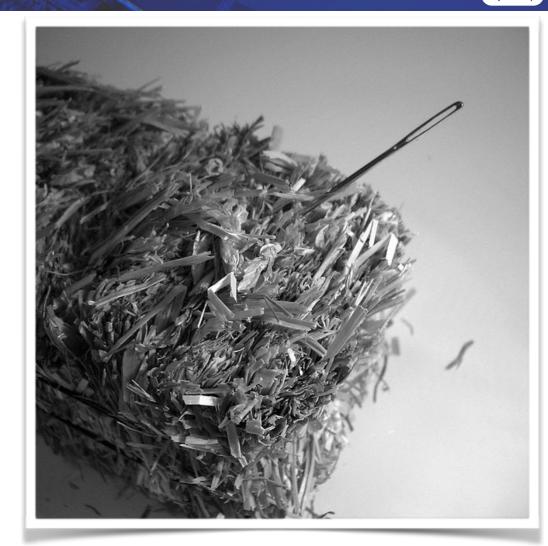
**M.** Floris

12

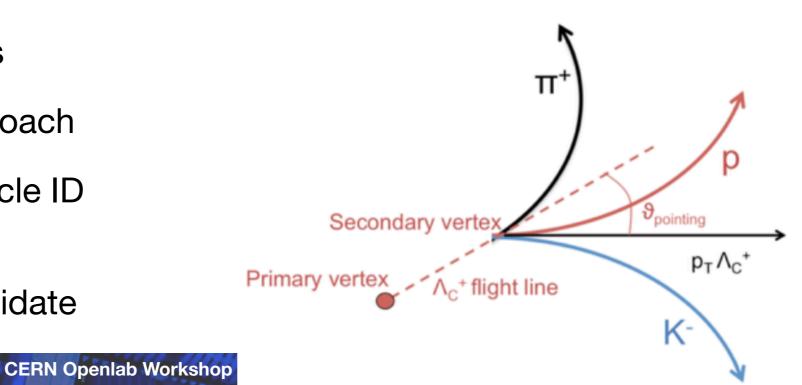
0.12

# Finding a decay, $\Lambda_C \rightarrow \pi Kp$

- Some particles identified through their decay products
- Reconstruction of 2- and 3-prong decays in heavy ion collisions is challenging: large combinatorics
  - (remember: several thousand particles/event)
- **Example**:  $\Lambda_C \rightarrow \pi Kp$ 
  - Loop over all possible triplets
  - Find distance of closest approach
  - Compute geometrical + Particle ID quantities (18)
  - Decide if this is a viable candidate

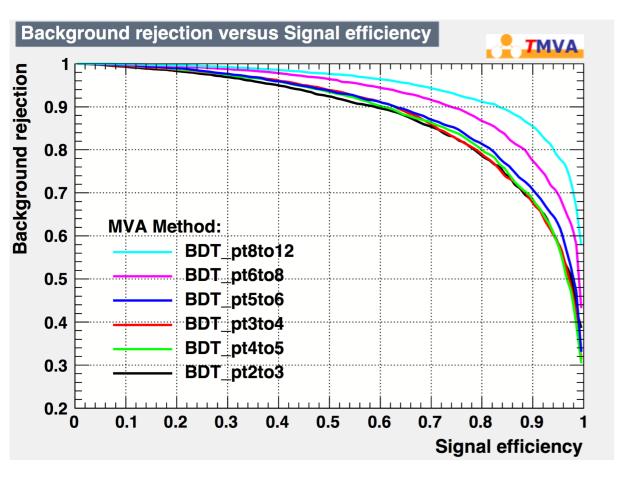


https://www.flickr.com/photos/mayaevening/138372058



# **High Level Features classification**

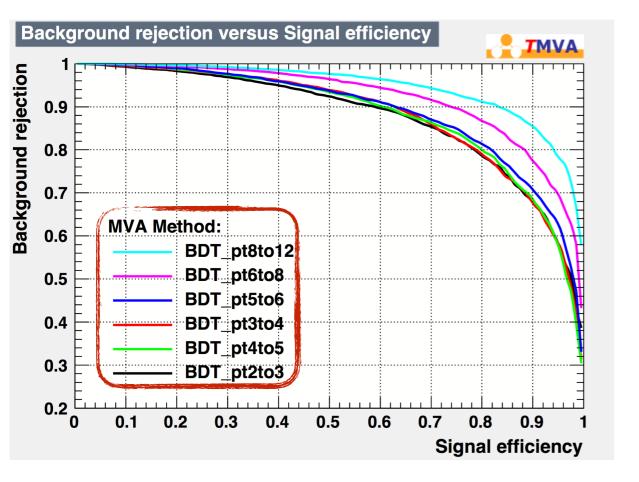




# Full detector simulation, p-Pb collisions **BDT**, based on **18 "high level features"** AUC depends on **momentum bin**

# **High Level Features classification**

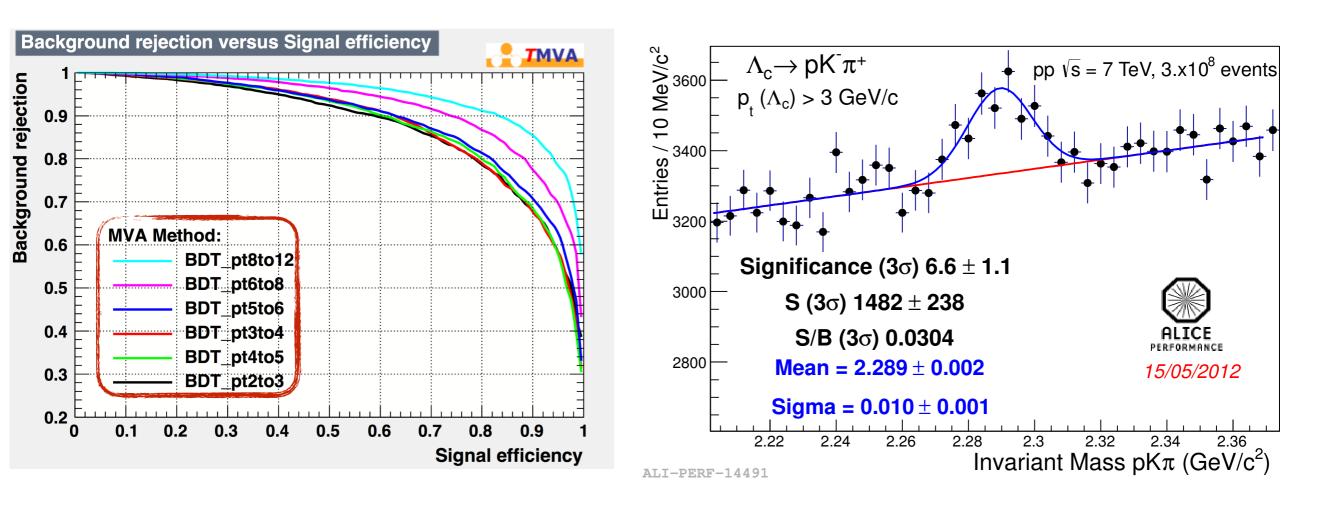




## Full detector simulation, p-Pb collisions **BDT**, based on **18 "high level features"** AUC depends on **momentum bin**

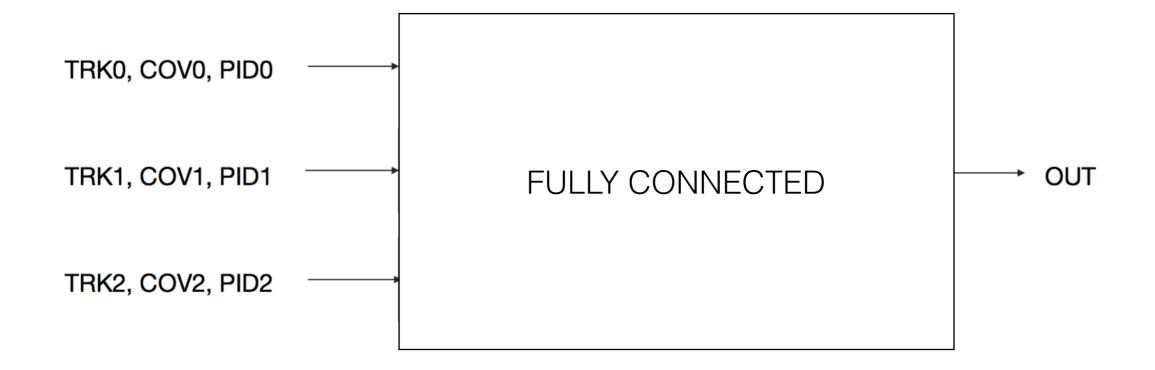
# CERN

# **High Level Features classification**



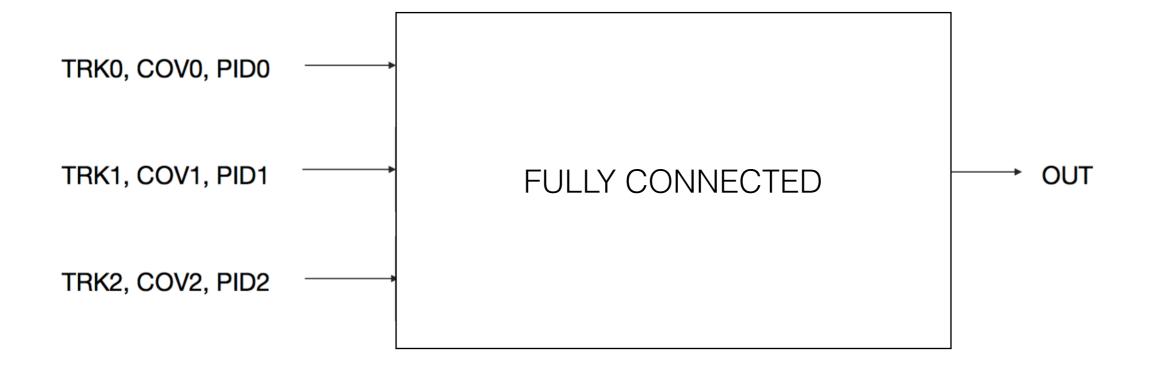
Full detector simulation, p-Pb collisions **BDT**, based on **18 "high level features"** AUC depends on **momentum bin** Invariant mass distribution to judge quality of the selection Important: **avoid "sculpting" a peak** in the background





Summer student report

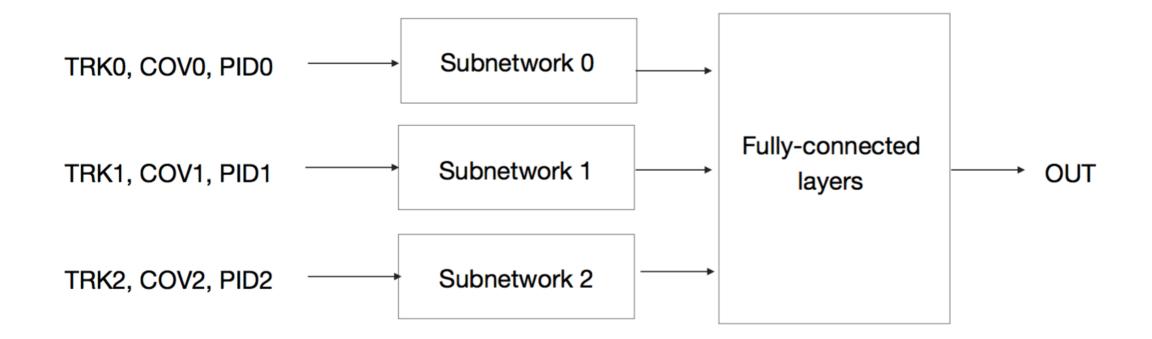




### 1. Fully connected (10 layers)

Summer student report

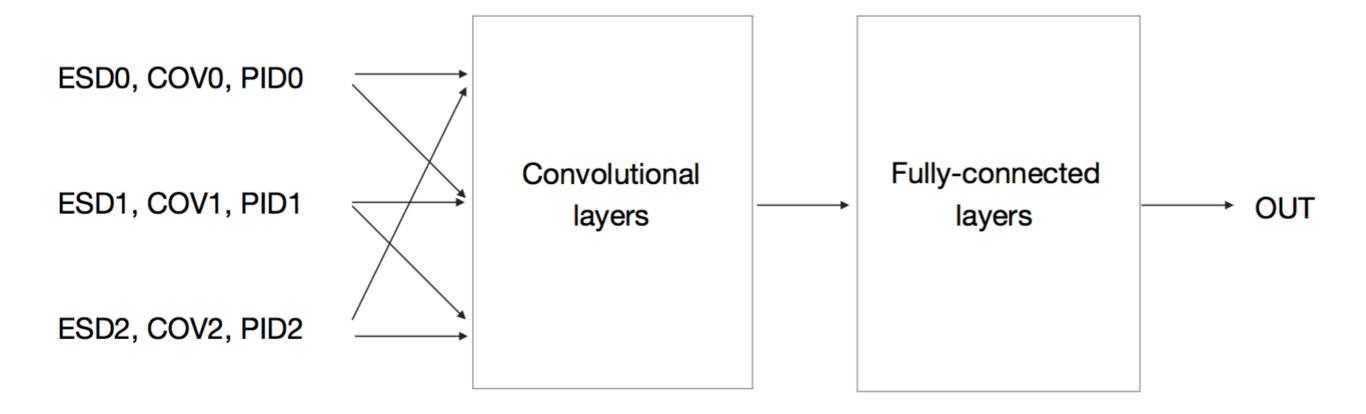




### 1. Fully connected (10 layers)

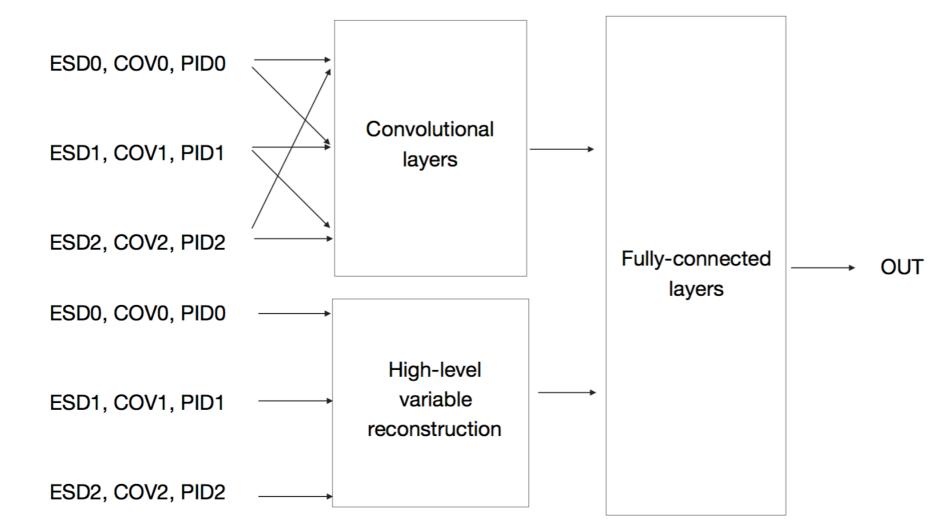
2. Per-track subnetwork (5+5 layers)





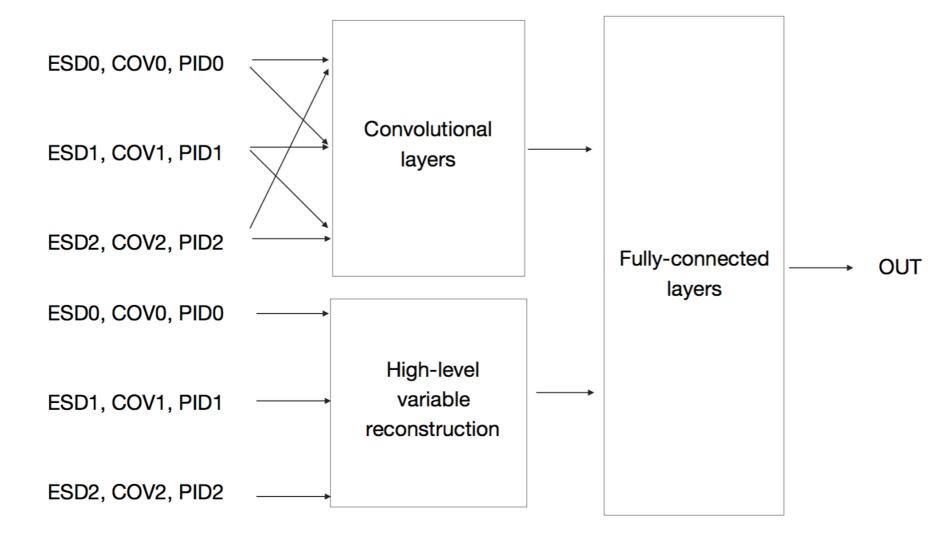
- 1. Fully connected (10 layers)
- 2. Per-track subnetwork (5+5 layers)
- 3. Track pairs convolution (2+5 layers)





- 1. Fully connected (10 layers)
- 2. Per-track subnetwork (5+5 layers)
- 3. Track pairs convolution (2+5 layers)
- 4. High level filter

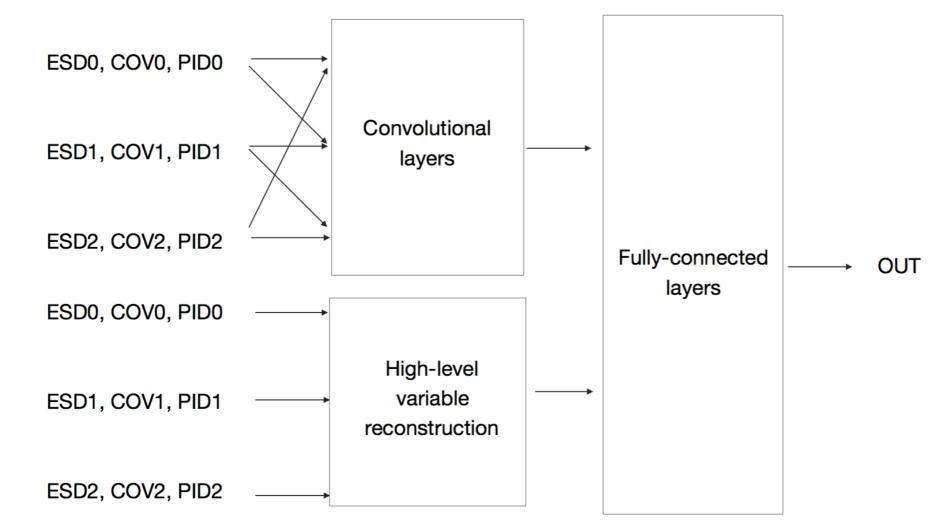




- 1. Fully connected (10 layers)
- 2. Per-track subnetwork (5+5 layers)
- 3. Track pairs convolution (2+5 layers)
- 4. High level filter

None outperforms "shallow" methods





- 1. Fully connected (10 layers)
- 2. Per-track subnetwork (5+5 layers)
- 3. Track pairs convolution (2+5 layers)
- 4. High level filter

None outperforms "shallow" methods

Best DNN: AUC ~ 0.906 vs 0.920 (but margins for improvement!)

Summer student report

# **Outlook: Beyond the toys**



- Training data come from Monte Carlo, imperfect description of real data
  - Avoiding over-relying on Monte Carlo (domain adaptation, see e.g. here)
  - DL requires very large training samples, may get **expensive** (GANs?)
- Jet images are sparse, some CV technique need to be adapted (e.g. CNN)
- Effect of detector reconstruction and pile-up
  - Partially investigated in current studies
- Large **backgrounds** (from pp pile-up or heavy ion):
  - Fake jets or spurious constituents attached to jets
  - Fluctuations in the jet background  $\Rightarrow$  smearing in jet energy
  - Use **DL for regression** to handle backgrounds?
- Heavy ion specific:
  - Training based on pp distributions, jets modified in Pb-Pb
  - Semi-supervised or unsupervised approaches? Domain adaptation?
- Aggressive classification may result in "background sculpting", serious issue for decay studies (Adversarial decorrelation? see e.g. <u>here</u>)

# Summary



- Deep learning methods being investigated in the HEP community for various classification problems
  - Initial performance promising
- Going deep by itself seems to improve some problems
  - Symmetries and peculiarities of physics datasets not yet fully exploited
    - (see also <u>arxiv:1702.00748</u>)
  - Expert knowledge leads to gains also when combined with deep methods
- Some **real-life issues** to be addressed (studies ongoing)
- Infrastructure for large-scale application of deep-learning (GPUs?)
- Will surely benefit from **collaboration with industry**!

**Additional links:** 

IML Workshop

IML Meeting on Deep Learning

DS@HEP Series (2015, 2016, 2017)

# Backup



-----

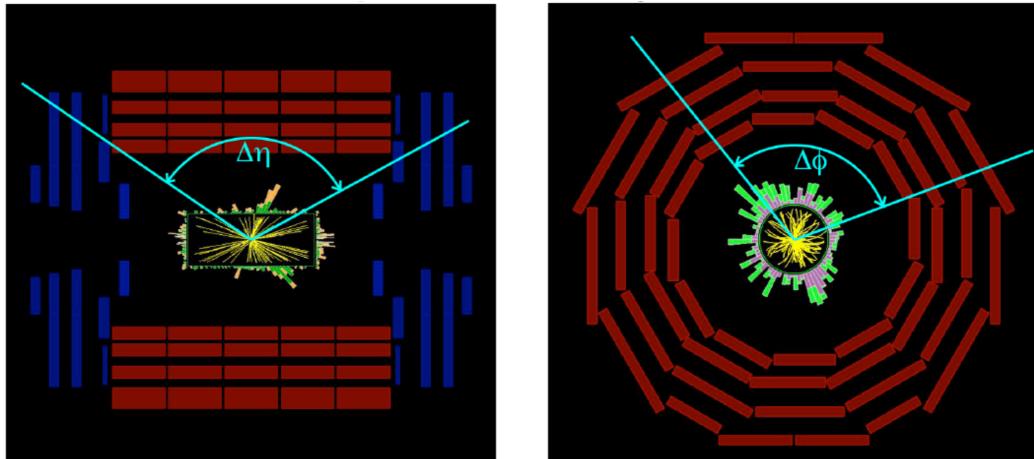
Nº L

alt in

### Angular coverage





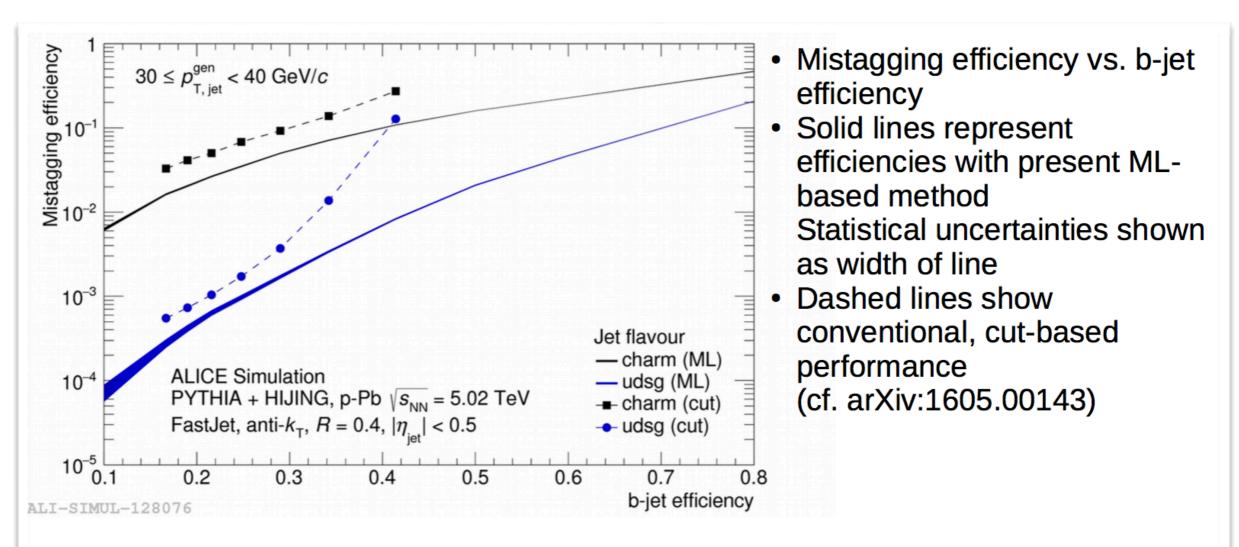


Angular coverage of the detectors, typically expressed as a function of azimuthal angle  $\varphi$  and pseudorapidity  $\eta$ 

$$\eta \equiv -\ln igg[ angle igg[ rac{ heta}{2} igg] igg]$$

### Performance compared to non-ML



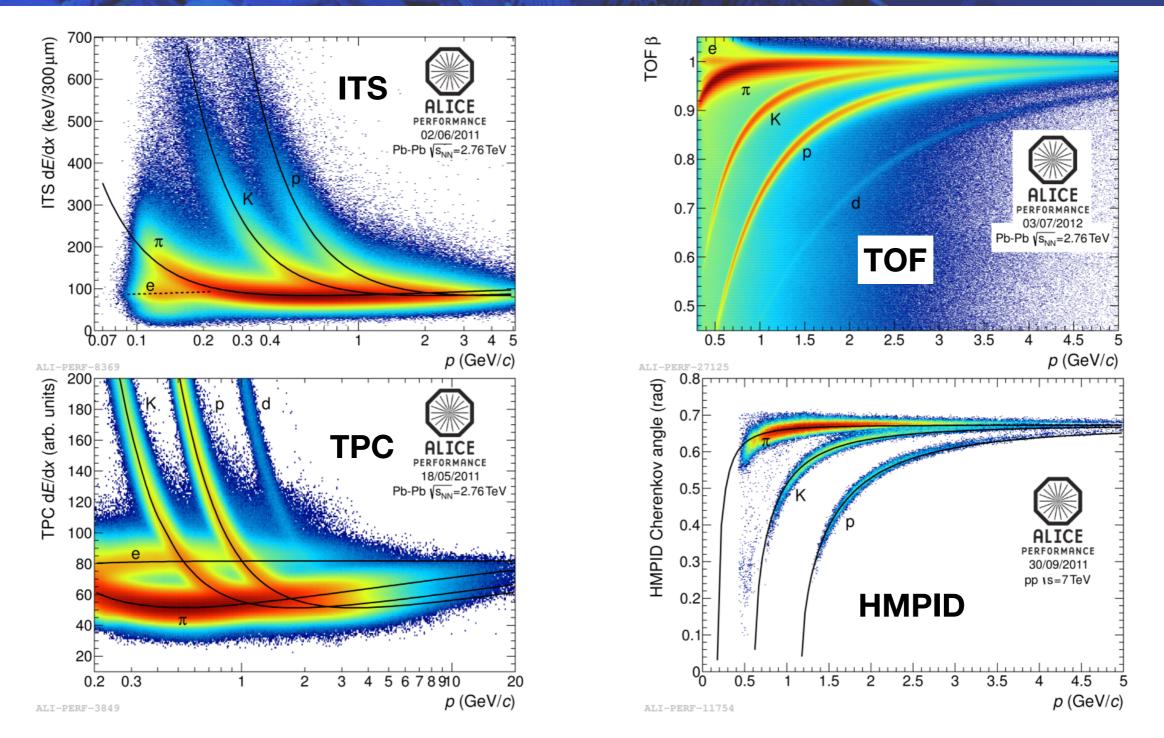


The present ML-assisted tagging method is very promising, compared to conventional method

- mistagging efficiency lower for c- and udsg-jets
- mistagging efficiencies rise less steep when considering higher b-jet tagging efficiency

# Particle Identification





Identity of daughter particles not directly known Particle identification (PID, many different techniques) correlates with particles identity