

Machine Learning in ROOT

S. Gleyzer (University of Florida), Lorenzo Moneta (CERN)

OpenLab Machine Learning Workshop, 27th April 2017

Outline

- Present status and Overview of the ML tools in ROOT
- New Features
 - Deep Learning
- Future plans and outlook
- Summary

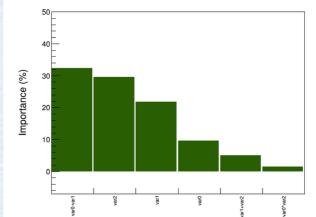
TMVA

- ROOT Machine Learning tools are provided in the package TMVA (Toolkit for MultiVariate Analysis)
- Provides a set of algorithms for standard HEP usage
- Used in LHC experiment production and in several analysis (e.g. Higgs studies)
- Easy interface for beginners, powerful for experts
- Several active contributors
- Various new features added last year (ROOT version 6.08)

New Features

New features added last year:

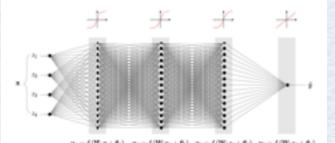
- Improve software modularity
 - decoupling of algorithms/data set/input variables
- External Interfaces to ML tools in R
 - using ROOT-R interface
- Interfaces to Python tools
 - scikit-learn and then Keras (supporting both Theano and Tensorflow)
- Variable Importance algorithm
- Several improvements in SVM



New Features (2)

New features added last summer in 6.08:

Deep Learning

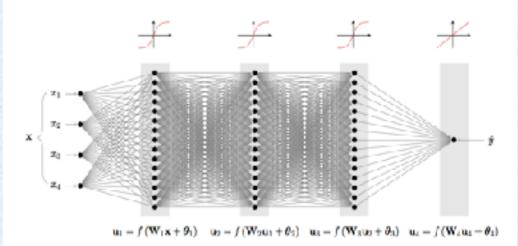


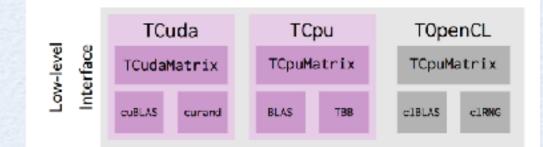
- support for parallel training on CPU and GPU (with CUDA and OpenCL)
- Cross Validation and Hyper-parameter optimisation
- Improved loss functions for regression
- Interactive training and visualization for Jupyter notebooks
- new pre-processing features (variance threshold)

Deep Learning

- Powerful ML method based on Deep Neural Network (DNN)
- New Deep Learning library in ROOT
 - parallel evaluation on CPU
 - implementation using OpenBLAS and TBB
 - GPU support
 - CUDA
 - OpenCL
 - Excellent performance and high numerical throughput
- For more information see

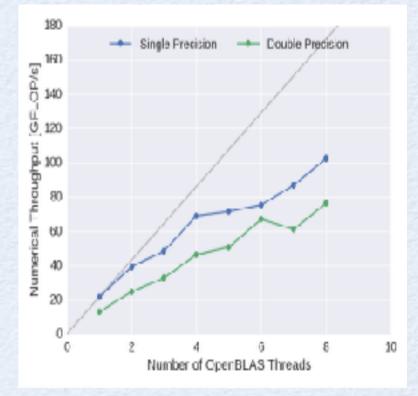
• https://indico.cern.ch/event/565647/contributions/2308666/attachments/1345668/2028738/tmva_dnn_gpu.pdf

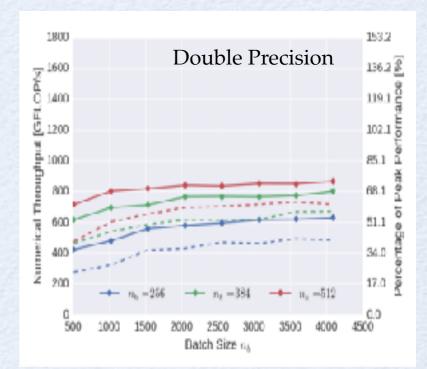




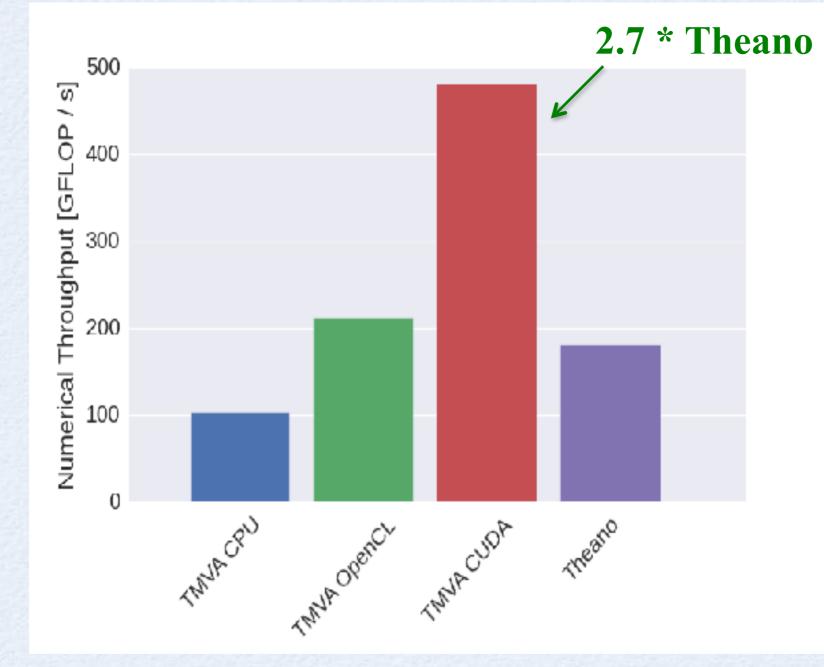
Deep Learning Performance

- CPU Performance
 - Intel Xeon E5-2650, 8 × 4 cores
 - Estimate peak performance:
 - 16 GFLOP/s / core
- GPU Performance
 - NVIDIA Tesla K20
 - Peak performance:
 - 1.17 TFLOP/s with double precision





Deep Learning Performance



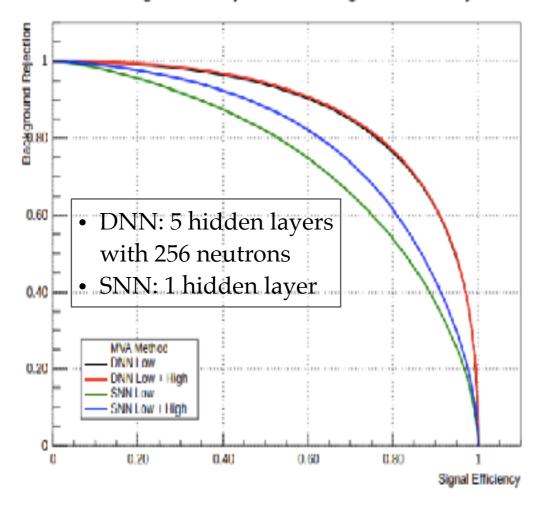
batch size = 1024 Single precision

Excellent throughput compared to Theano on same GPU

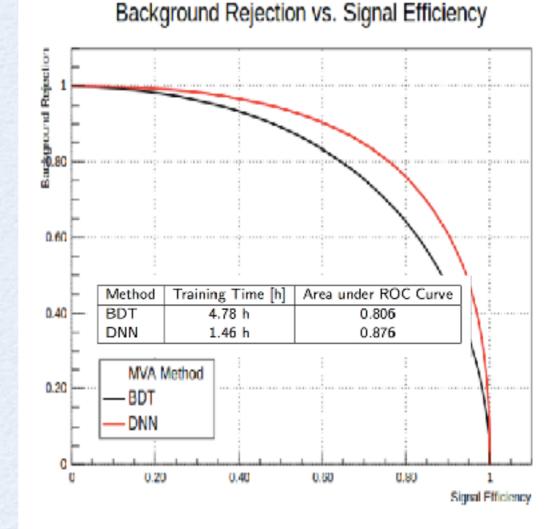
Deep Learning Performance

DNN vs Standard ANN

Background Rejection vs. Signal Efficiency



DNN vs BDT

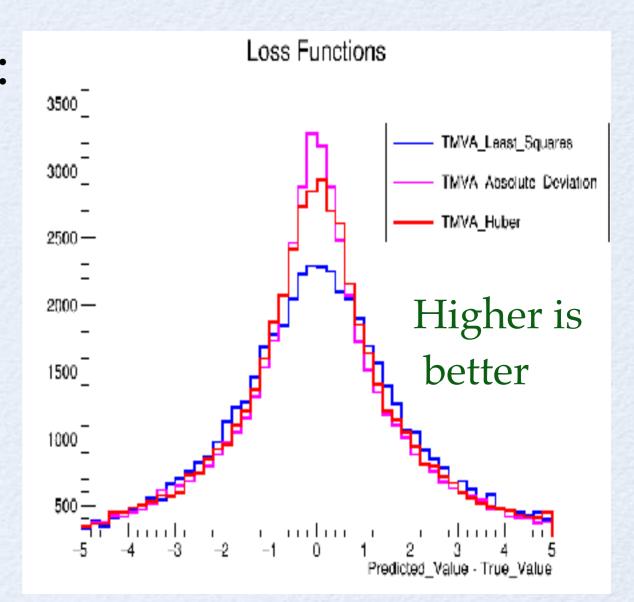


Using Higgs public dataset with 11M events
 Significant improvements compared to shallow networks and BDT

L. Moneta / PH-SFT

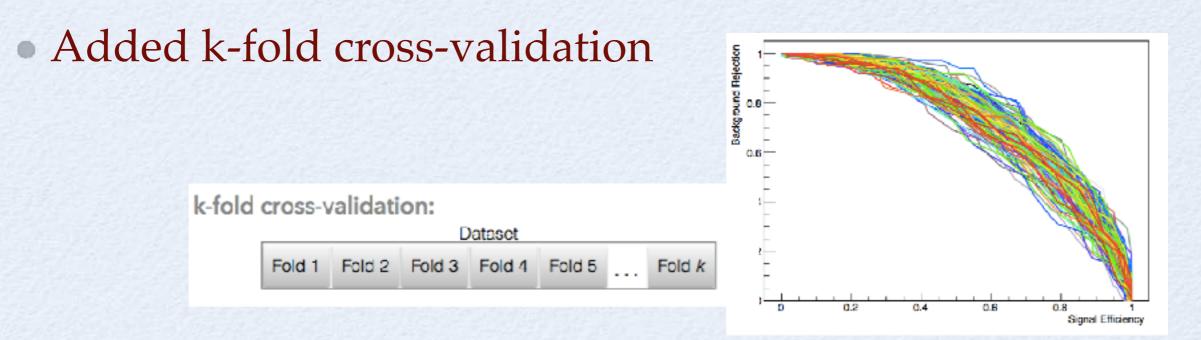
Regression

- New Regression Features:
 - Loss function
 - Huber (default)
 - Least Squares
 - Absolute Deviation
 - Custom Function



Important for regression performance

Cross Validation



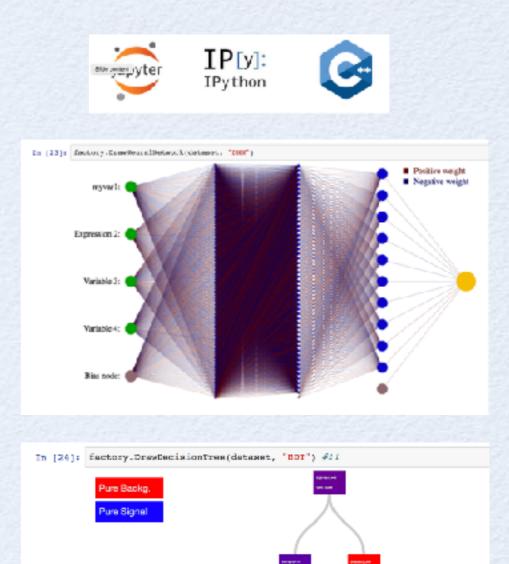
- Hyper-parameter tuning
 - find optimised parameters (BDT-SVM)
- Providing support for parallel execution
 - multi-process/multi-threads and on a cluster using Spark or MPI

Jupyter Integration

New Python package for using TMVA in Jupyter notebook (jsmva)

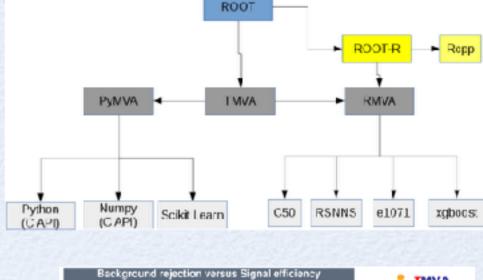
- Improved Python API for TMVA functions
- Visualisation of BDT and DNN
- Enhanced output and plots (e.g. ROC plots)
- Improved interactivity

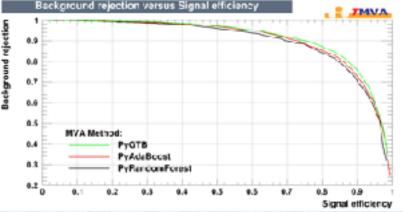
 (e.g. pause / resume / stop of training)
- see example in SWAN gallery https://swan.web.cern.ch/content/machine-learning



TMVA Interfaces

- **RMVA**: Interface to Machine Learning methods in R
 - c50, xgboost, RSNNS, e1071
 - see http://oproject.org/RMVA
- **PYMVA**: Python Interface
 - skikit-learn (RandomForest, Gradiend Tree Boost, Ada Boost)
 - see <u>http://oproject.org/PYMVA</u>
 - Keras (Theano + Tensorflow)
 - support model definition in Python





- See https://indico.cern.ch/event/565647/contributions/2308668/attachments/1345527/2028480/29Sep2016_IML_keras.pdf
- Data are copied from TMVA to Numpy array
- C Python interface used

Upcoming Features

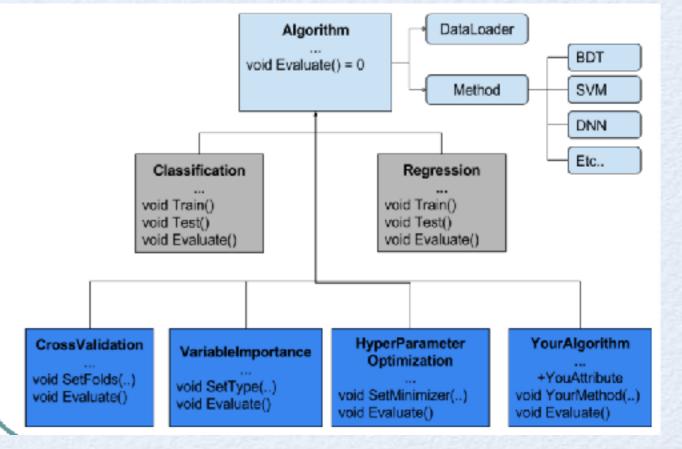
- Full support for parallelisation when using analyzer tools
 - e.g. cross-validation, hyper-parameter optimisation, variable importance
- Integrating deep auto-encoders and more unsupervised preprocessing tools (e.g. Hessian LLE)
- Improvements in deep neural networks
 - addition of Convolutional Neural Network (CNN) and Recurrent Neural Network planned for the summer (GSOC students)
- Adding support for multi-target regression
- Working on performance improvements of existing tool
- Facilitate handling of large data sets
 - minimise memory usage by minimizing data copy

Parallelisation

- Refactoring of high level classes in TMVA in order to support parallelisation
- Parallelize analyzer tools:
 - cross-validation
 - hyper-parameter optimisation
 - variable importance
- Support different paradigms:
 - multi-threads using TBB
 - multi-process using fork (TProcessExecutor)
 - multi-cluster using MPI or Spark

• Internal parallelization of the ML methods (multi-threads and GPU)

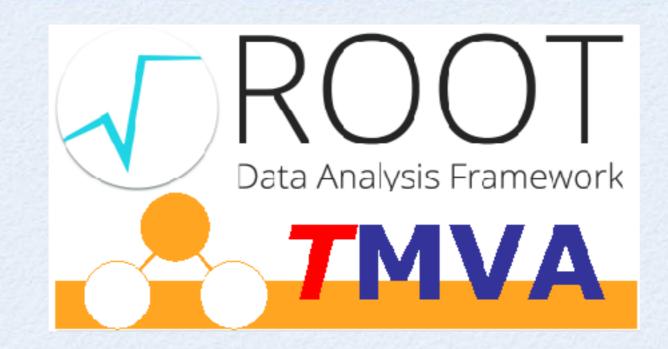
- already supported for the DNN
- on-going work for the BDT



Summary

- ROOT continues to provide a large set of ML tools
- Many new features added recently and even more will come soon
 - important to develop and maintain a core set of tools for HEP usage despite very good ML software exists outside
 - working also on integrating better external tools (handling large data sets)
- Many contributions from various people
 - excellent students from Google Summer of Code
- Feedback and further contributions welcome

More Information



Websites:

- <u>http://root.cern.ch</u>
- <u>http://iml.cern.ch</u>
- <u>http://oproject.org</u>

TMVA Contributors

- Lorenzo Moneta
- Sergei Gleyzer
- Omar Zapata Mesa
- Peter Speckmeyer
- Simon Pfreundschuh
- Adrian Bevan, Tom Stevenson
- Attila Bagoly
- Albulena Saliji
- Stefan Wunsch
- Pourya Vakilipourtakalou
- Abhinav Moudhil
- Georgios Douzas
- Paul Seyfert
- Andrew Carnes
- Kim Albertsson

Algorithm development, Parallelization, Integration and support Analyzer Tools, Algorithm Development PyMVA, RMVA, Modularity, Parallelization **Deep-Learning** CPU Deep-Learning CPU and GPU SVMs, Cross-Validation, Hyperparameter Tuning Jupyter Integration, Visualization, Output **TMVA Output Transformation KERAS** Interfance Cross-Validation, Parallelization Pre-processing, Deep Autoencoders Spark, Cross-Validation, Hyperparameter Tuning Performance optimization Regression, Loss Functions, BDT Parallelization Multi-class for BDT and various code improvements

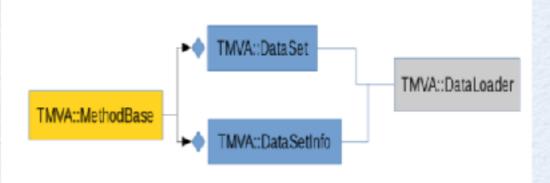
 Continued invaluable contributions from Andreas Hoecker, Helge Voss, Eckhard von Thorne, Jörg Stelzer, and key support from CERN EP-SFT Group

Backup slides

TMVA DataLoader

- DataLoader is a new class that allows greater flexibility when working with datasets. It is an interface to
 - load the datasets
 - root files (TTrees) but can be extended to other types
 - add variables
- TMVA Factory links DataLoader with a specific MVA method when booking

Obtained desired flexibility in de-coupling methods/dataset/variables

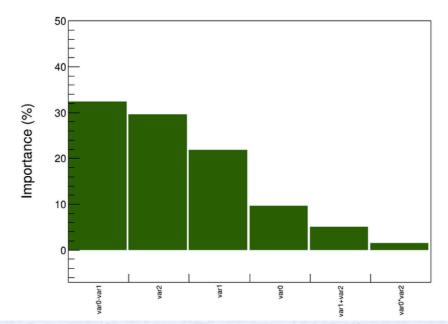


Feature Importance

- Ranks the importance of features based on contribution to classifier performance
 - A stochastic algorithm independent of classifier choice

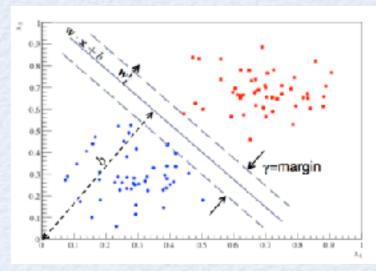
$$FI(X_i) = \sum_{S \subseteq V: X_i \in S} F(S) \times W_{X_i}(S) \qquad W_{X_i}(S) \equiv 1 - \frac{F(S - \{X_i\})}{F(S)}$$

- Feature set {V}
- Feature subset {S}
- Classifier Performance F(S)

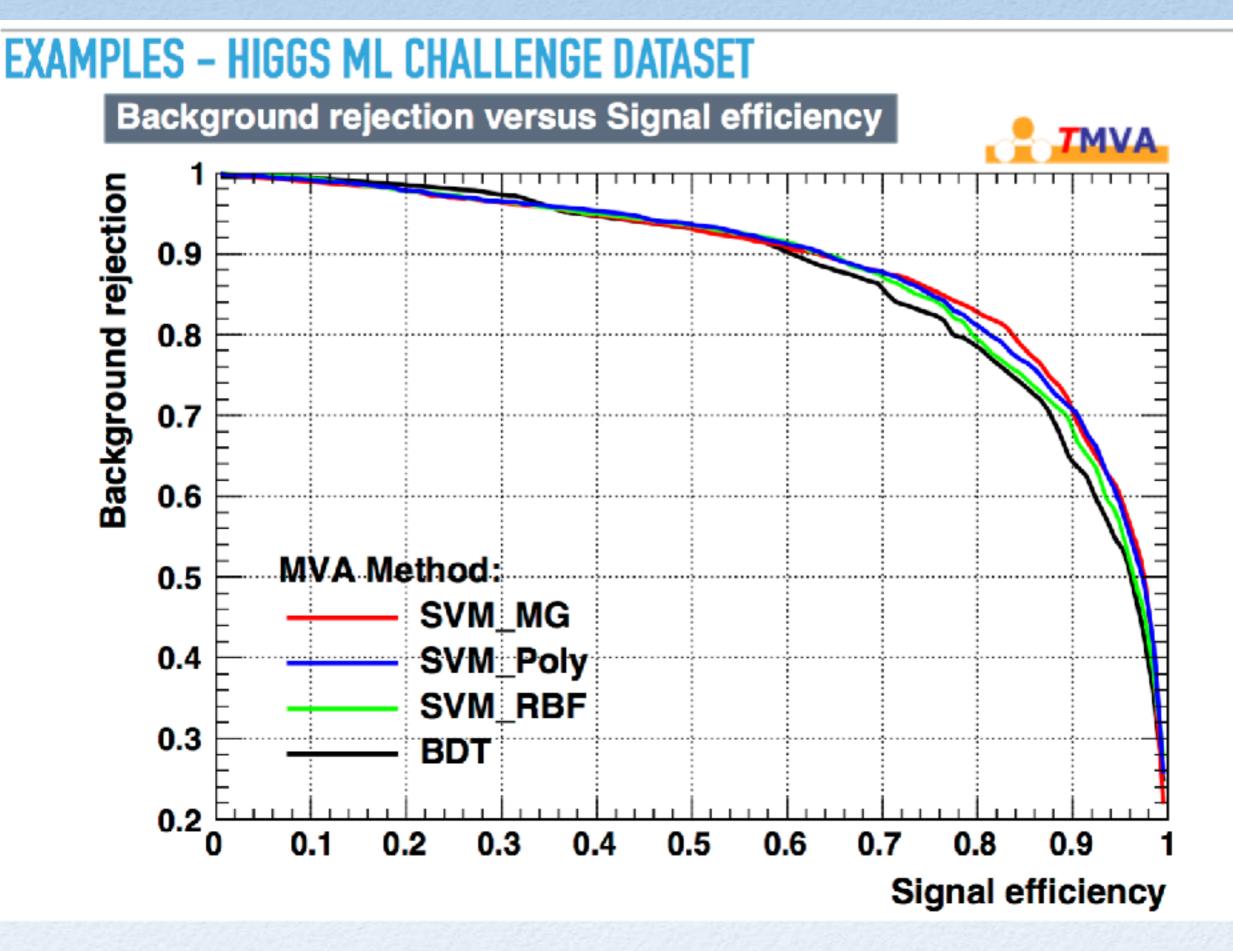


Improved SVM

- Include in TMVA additional functionality for SVM: (work by T. Stevenson and A. Bevan)
 - New Kernel functions:
 - Multi-Gaussian, Polynomial and support for product and sum of kernel functions

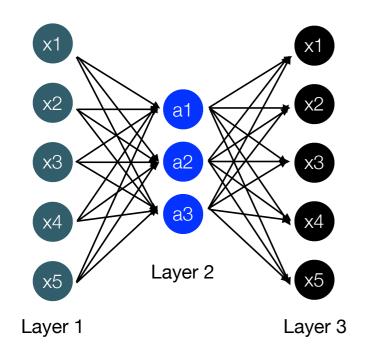


- Implemented Parameter optimisation for kernel parameters and cost
 - Cost weighted to signal/background events
- Loss function (implemented but not currently used)

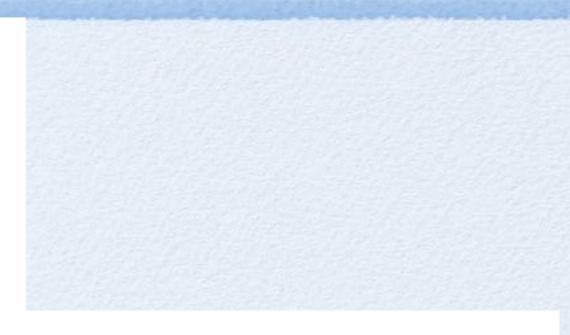


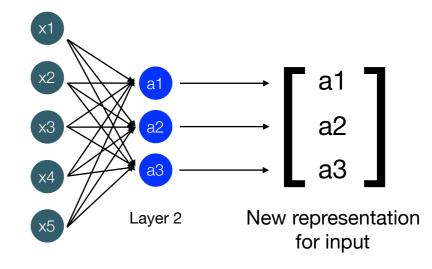
Deep Autoencoders

Deep Autoencoders



- Network is trained to output the input i.e. learn the identity functions.
- Constrain number of units in hidden layer, thus learning compressed representation.





Layer 1

Reference:

3

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural networks." Science 313.5786 (2006): 504-507.

4

Hessian Linear Local Embedding

- A non linear dimensionality reduction method
- Embeds a set of points from high dimensional space to low dimensional space such that projected point should have the same neighbourhood as the original point

Reference:

Donoho, David L., and Carrie Grimes. "Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data." Proceedings of the National Academy of Sciences 100.10 (2003): 5591-5596.

