Data Analytics for CERN Control Systems

CERN Machine Learning openlab workshop

Geneva, April 2017

<u>Filippo Tilaro</u> Fernando Varela Rodriguez Manuel Gonzalez Berges Piotr Jan Seweryn 1

CERN: one of the world's largest automation systems

(Automation) Infrastructure

Experiments

50 times more data than today in the next 10 years!

101010101101011010100101 101010101011010101010101010

components

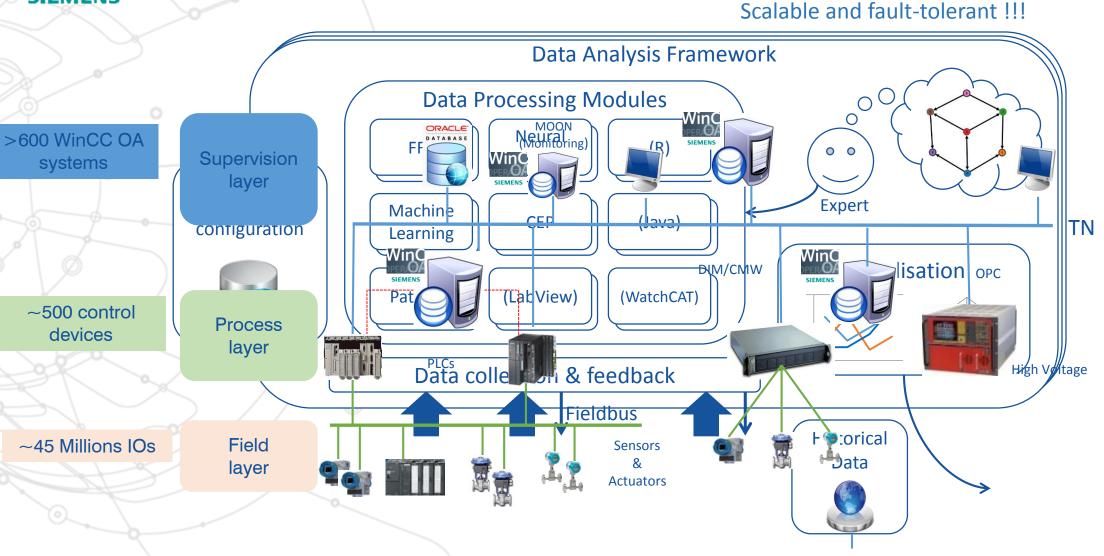
CERNopenlab

SIEMENS

 massive amount of operational data generated every day mode)

- over 1 PB/s of data generated by the detectors
- > Up to 50PB/Year of stored data

Our vision of the analytics framework



CERN control system use-cases

Based on real examples

Use-cases classification

CERN openlab

SIEMENS

 Continuous service to analyse the system status and inform operators in case of fault detection

Fault diagnosis

 "Forensics" analysis of system faults that have already happened in the past. In some cases root-cause analysis

³ Engineering design

 Analysis of historical data to draw conclusions about system behaviours which could be helpful to improve / optimize the system under analysis

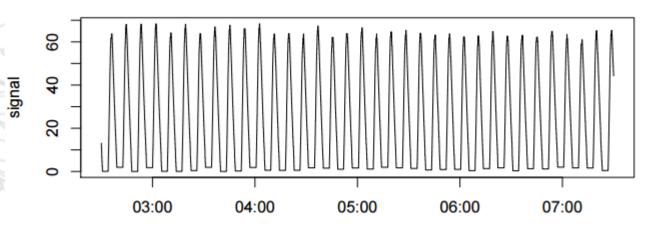
Online monitoring

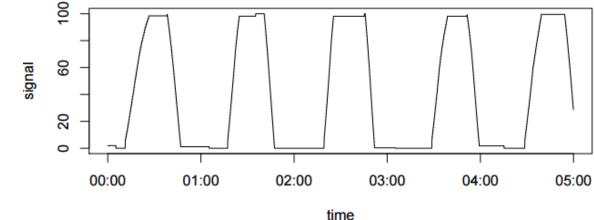
- Oscillation analysis in cryogenics valves (CRYO, CV)
- Online analysis of control alarms

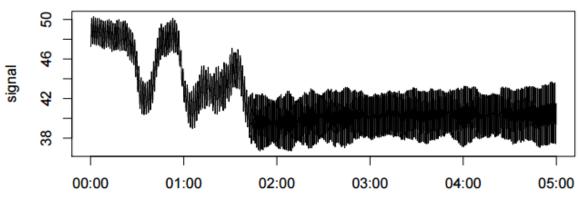
Oscillation analysis for cryogenics valves

- Goal: detect whenever a signal is oscillating in any anomalous way. Impact on:
 - Control system stability
 - Increased communication load
 - Maintenance (use of actuators)
 - Safety

Performances (Physic time)

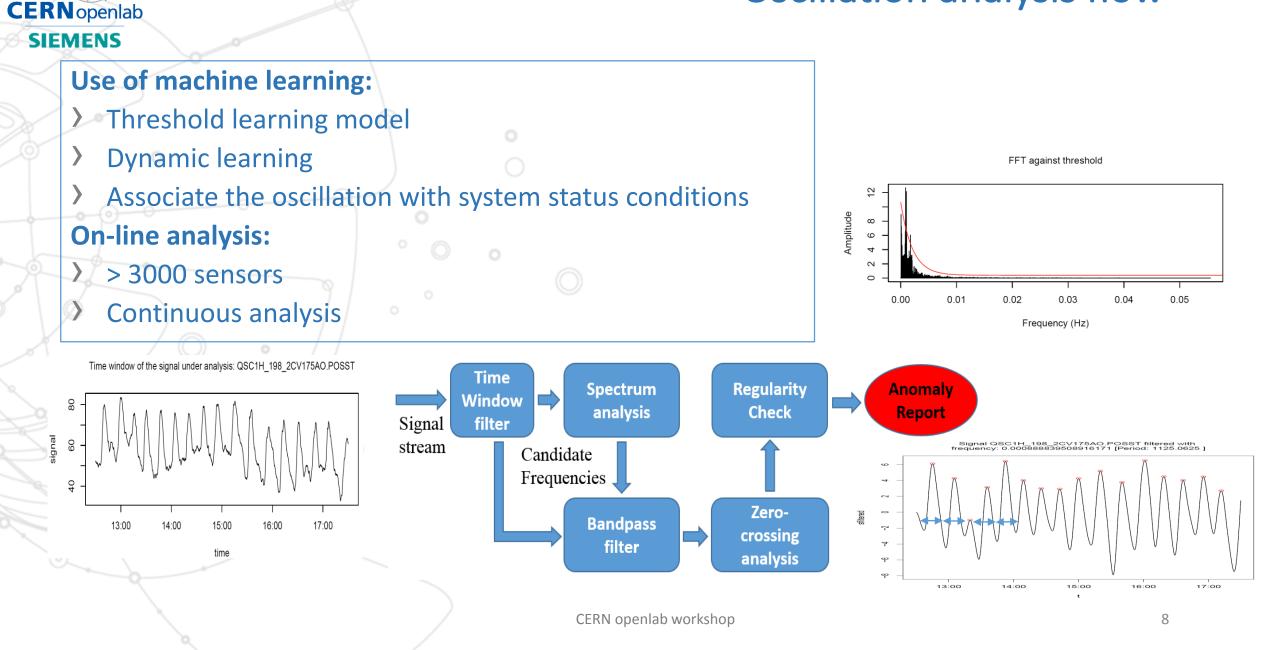






time

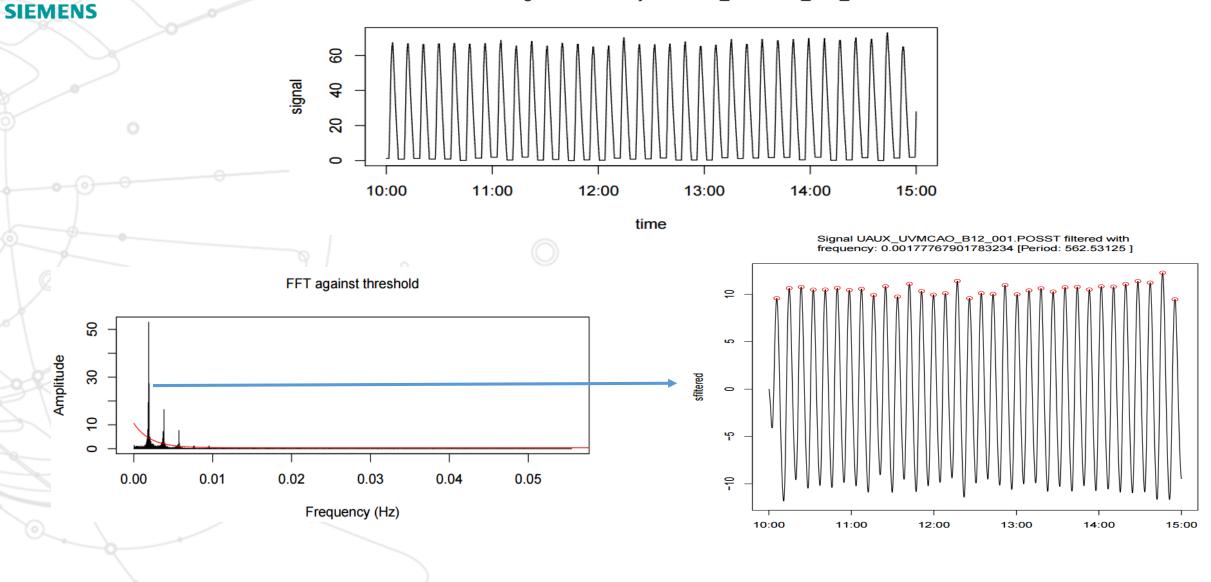
Oscillation analysis flow



Oscillation detection Ex#1

Time window of the signal under analysis: UAUX_UVMCAO_B12_001.POSST

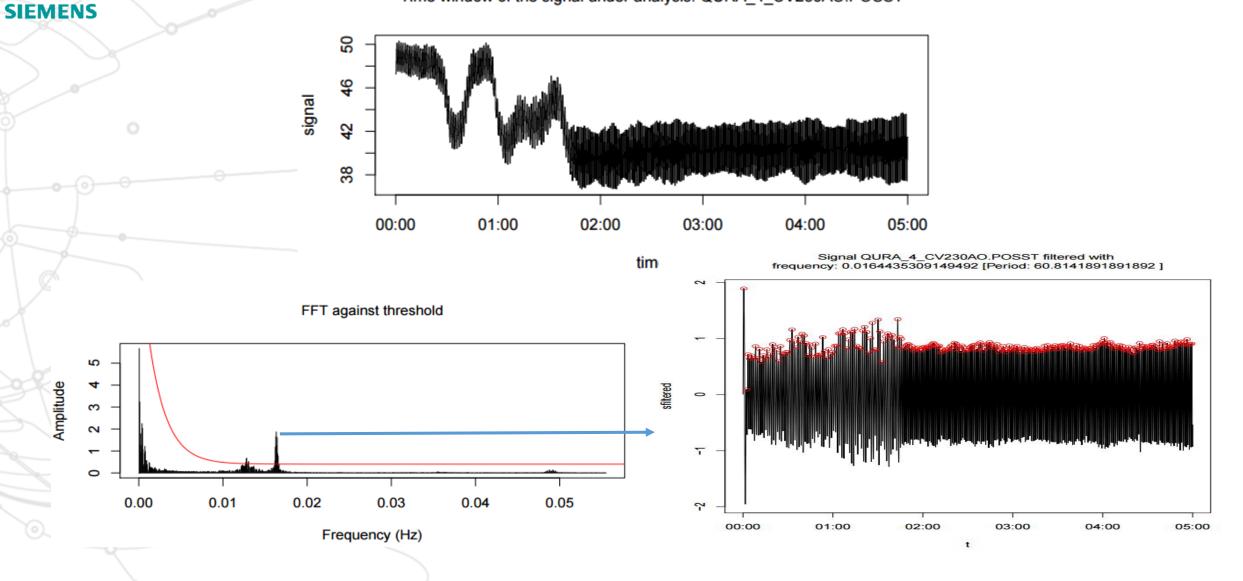
CERNopenlab

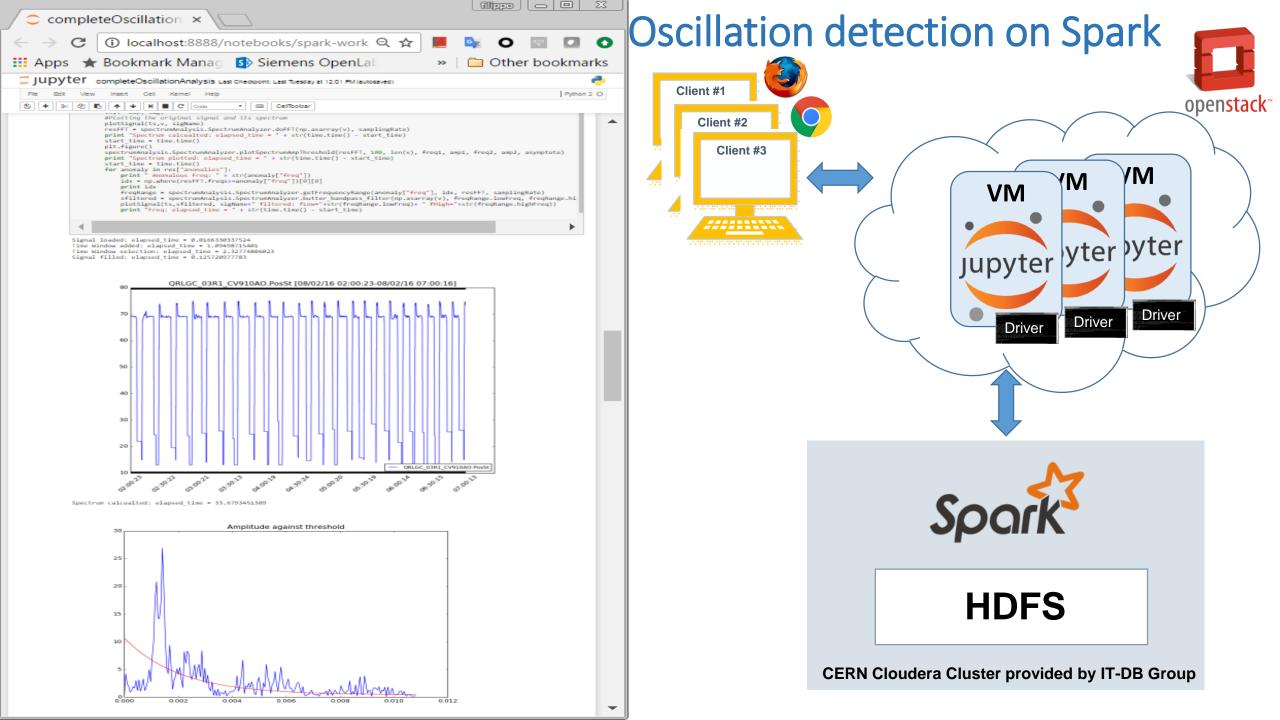


Oscillation detection Ex#2

Time window of the signal under analysis: QURA_4_CV230AO.POSST

CERNopenlab

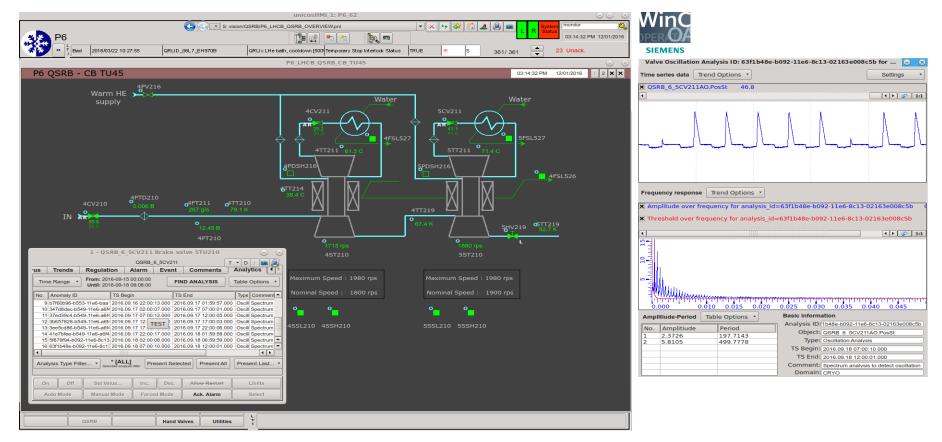




Oscillation detection & WinCC OA

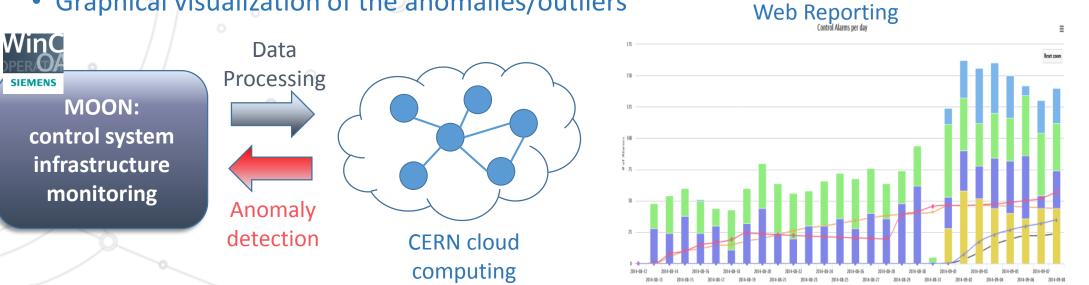
- **Status:**
 - Working prototype
 - Testing

- > Next steps:
 - Extension for custom analysis types
 - Compatibility with WinCC OA 3.15
 - User Documentation



Online analysis of control alarms

- CERNopenlab SIEMENS
- Alarms analysis to detect anomalies or abnormal behaviors for thousands of devices
- Events sequence mining
 - to understand the alarms' dependencies
 - for short term forecast
- Threshold learning algorithm and outliers detection techniques
 - Based on alarms' distribution
 - Parallelization using the CERN OpenStack cluster
- Graphical visualization of the anomalies/outliers

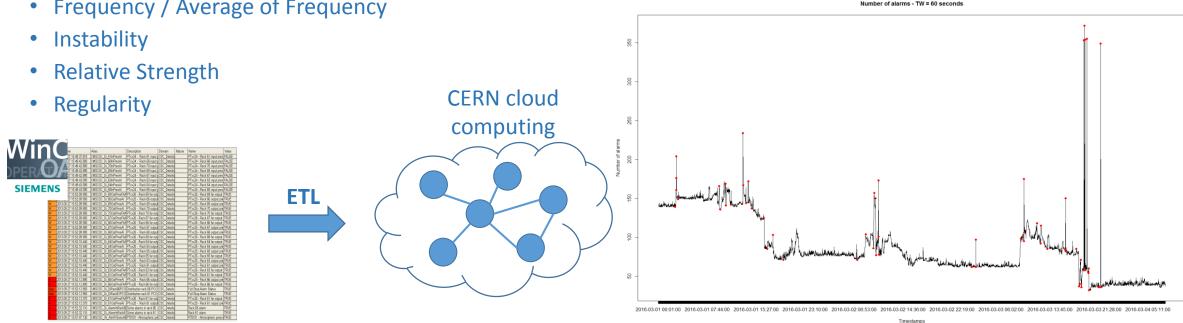


Anomaly detection of control process variables based on custom indexes

• Analysis at different granularity: device, tag,

- Overview of the system through a list of indicators:
 - # / Average(#) of Alarms per Time Window
 - Integration
 - System Under Alarm
 - Probability of Finding Alarm
 - Frequency / Average of Frequency

level

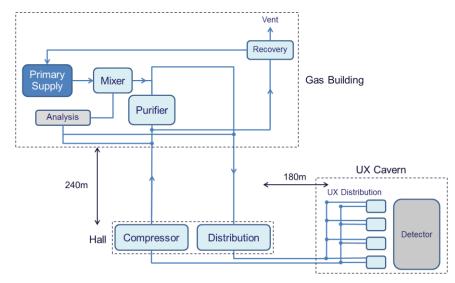


Fault diagnosis (off-line)

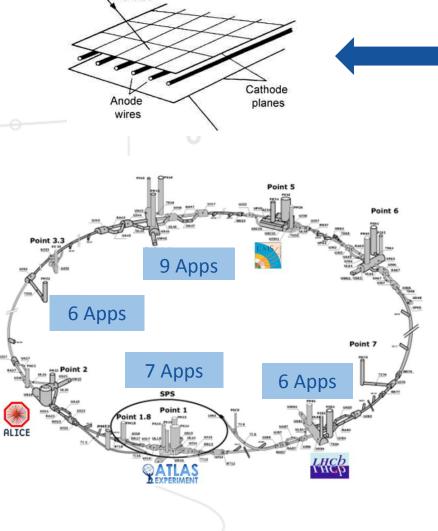
Root cause analysis for control alarms avalanches (GAS system)

Anomaly detection by sensors data mining

An example:



- 4 Data Server, 51 PLCs (29 for process control, 22 for flow-cells handling)
- Essential for particle detection
- Reliability and stability are critical
 - Any variation in the gas composition can affect the accuracy of the acquired data
- ~18 000 physical sensors / actuators



Particle

CERNopenlab

SIEMENS

Alarm flooding problem

Domino effect

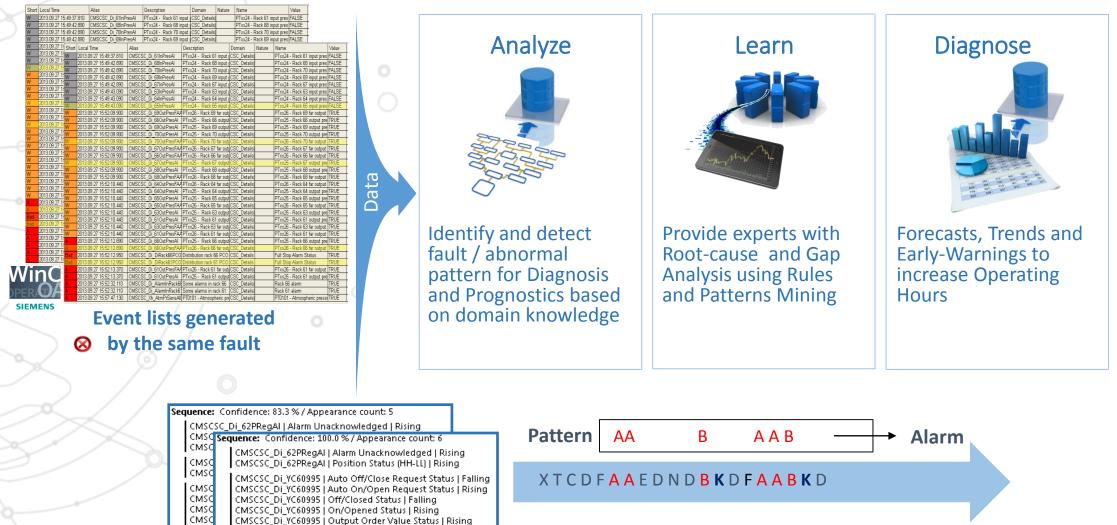
8 Fault in the distribution system

2010 82 71 54 29 810 CMSCSC, D, Gill-Peral, PTru24 - Reak Sil Input, CSC, Details PTru24 - Reak Sil Input, pres PLASE 2010 82 71 54 28 00 CMSCSC, D, Bill-Peral, PTru24 - Reak Sil Input, CSC, Details PTru24 - Reak Sil Input, pres PLASE 2010 82 71 54 28 00 CMSCSC, D, Dill-Peral, PTru24 - Reak Sil Input, CSC, Details PTru24 - Reak Sil Input pres PLASE 2010 82 71 54 28 00 CMSCSC, D, Dill-Peral, PTru24 - Reak Kil Input, CSC, Details PTru24 - Reak Sil Input pres PLASE 2010 82 71 54 28 00 CMSCSC, D, Bill-Peral, PTru24 - Reak Kil Input, CSC, Details PTru24 - Reak Sil Input pres PLASE 2010 82 71 54 28 00 CMSCSC, D, Bill-Peral, PTru24 - Reak Kil Input, CSC, Details PTru24 - Reak Kil Input pres PLASE 2010 82 71 54 28 00 CMSCSC, D, Bill-Peral, PTru24 - Reak Kil Input, CSC, Details PTru24 - Reak Kil Input pres PLASE 2010 82 71 54 28 00 CMSCSC, D, Bill-Peral, PTru24 - Reak Kil Input, CSC, Details PTru24 - Reak Kil Input pres PLASE 2010 82 71 55 20 800 CMSCSC, D, Bill-Peral, PTru25 - Reak Kil Input, CSC, Details PTru24 - Reak Kil Input, CSC, Details 2010 82 71 55 20 800 CMSCSC, D, Bill-Peral, PTru25 - Reak Kil Input, CSC, Details PTru24 - Reak Kil Input, RSC, Details 2010 82 71 55 20 800 CMSCSC, D, Bill-PERAH PTru25 - Reak Kil Input, CSC, Details PTru24 - Reak Kil Input, RSC, Details

Alarms flooding

- **Diagnosing a fault is complex:** it may take weeks!
 - Alarms flooding: a single fault can generate up to a thousand of events
 - Number of different sequences:
 - ~6x10²⁹⁷ from: n!/(n-k)! , n=max seq. length, k=n/10
 - A single fault can stop the whole control process
 - The 1st alarm is not necessarily the most relevant for the diagnosis
 - Alarm generation depends on the system status

Events stream analysis

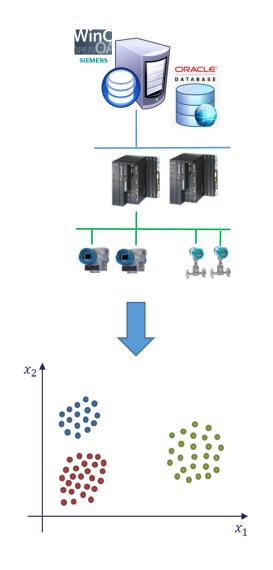


Anomaly detection by sensors data mining

- Goal: Detect abnormal or unforeseen system behaviours
- Possible issues:
 - Sensors faults/glitches
 - Hardware failures/degradations
 - False measurements
 - Wrong tuning/structure
- Sensors mining to learning:
 - Logical relations
 - Physical relations
- Challenges:

...

- Normal/anomalous boundaries are not precise
- Different application domains/systems
- Mostly unsupervised training
- Dynamic system => dynamic model
- Different types of anomaly
- Noise and duration of an anomaly



LHC Logging

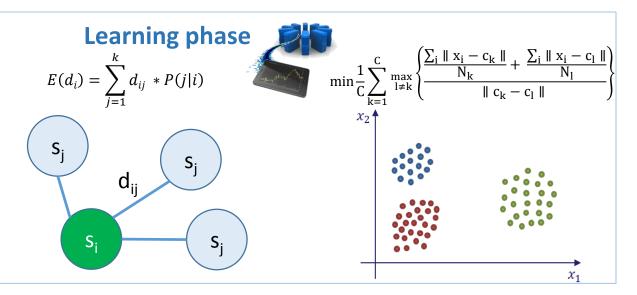
Service

Sensors data

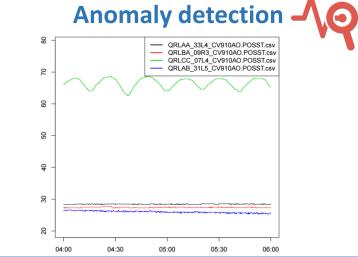
extraction

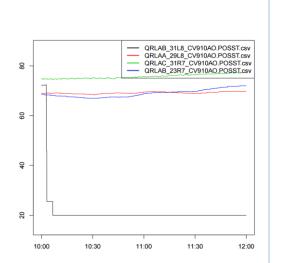
Machine learning algorithms for anomaly detection in Cryo

- Building a model based on historical data
- 3 different algorithms
 - Correlation index and KNN-graph
 - K-Mean clustering and probability model
 - Statistics expert-based model



- Use the previous model to detect anomalies
- On-line analysis over a time window of 1 day
- Continuous analysis against thousands of sensors





Engineering design

- PID supervision (CRYO, CV)
- Recommendation system for WinCC OA users (PSEN)

In collaboration with the University of Valladolid

Based on: "Performance monitoring of industrial controllers based on the predictability of controller behaviour", R. Ghraizi, E. Martinez, C. de Prada

> PID performance has an impact on:

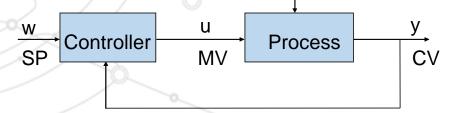
- Process security
- Quality of physics
- Maintenance (stress on the equipment)

Issues:

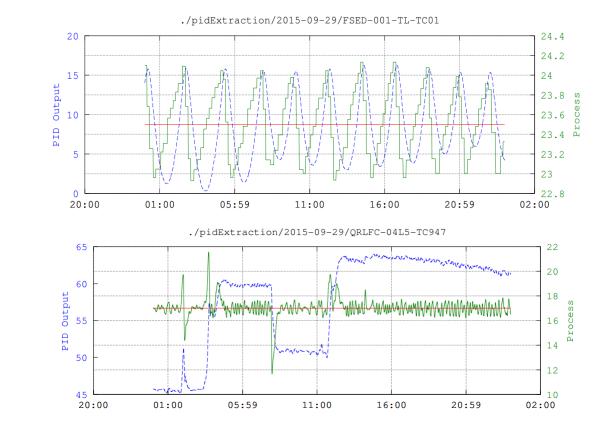
CERNopenlab

SIEMENS

- Many sources of faults/malfunctions
- System status dependency
- External disturbances/factors
- Bad tuning
- Wrong controller type/structure
- Slow degradation



V

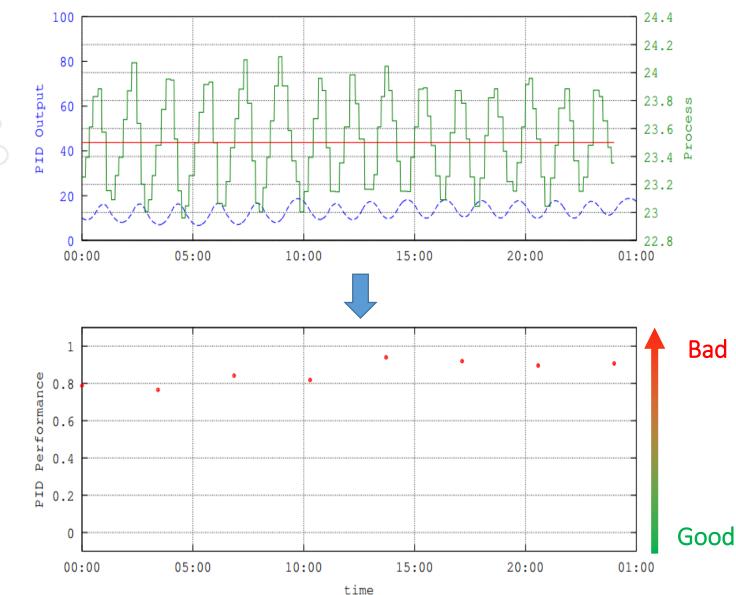


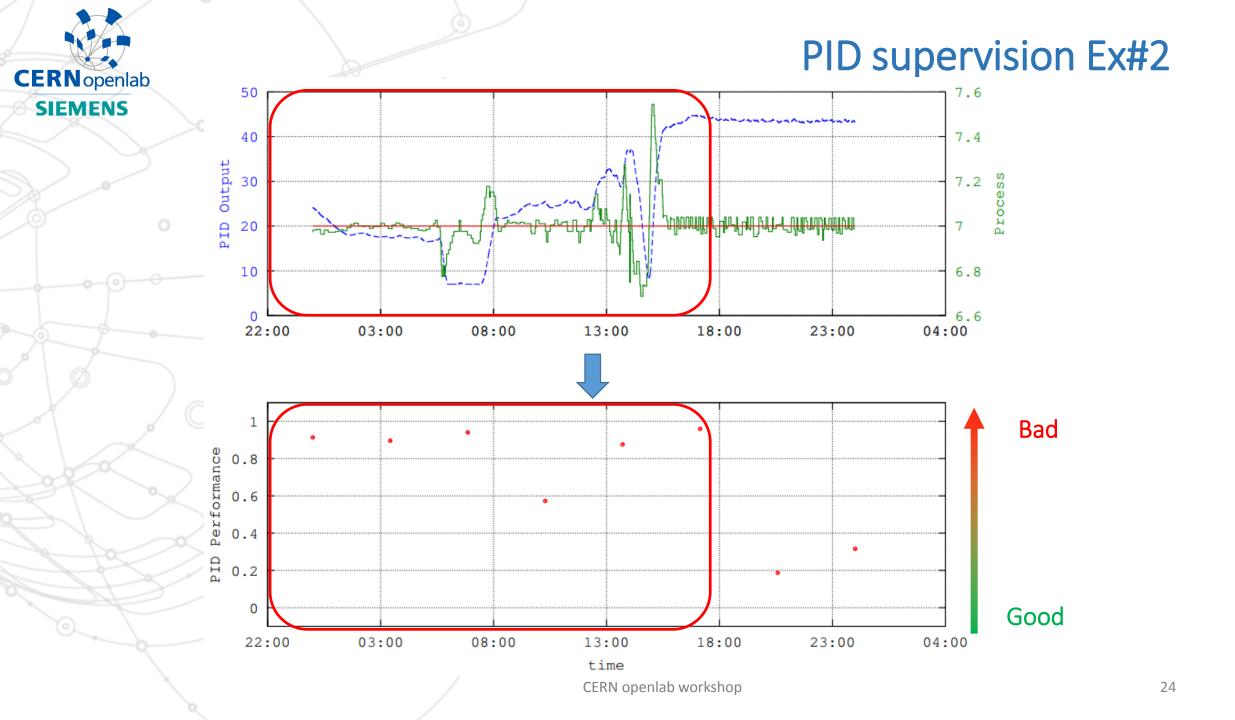
PID supervision Ex#1

- > PID anomaly detection:
 - Learning each PID model from the historical data
 - Extraction of similar PID models
 - Comparison of PID behaviours:
 - on the single PID level
 - similar PID

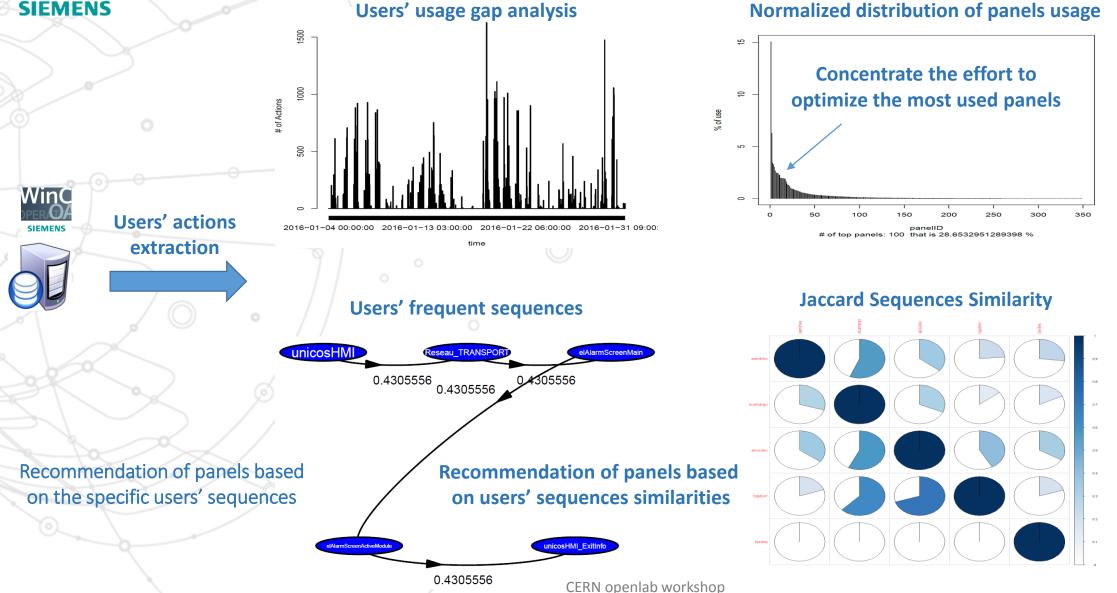
Efficiency of control process:

- Comparison of PID performances
- Time/actions taken/energy consumed to reach steady points
- Stability of the controlled variable

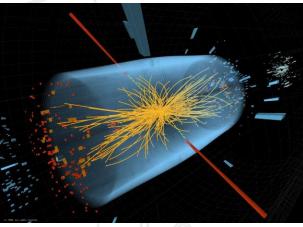




Recommendation system for WinCC OA users



Data Analytics Benefits



Operation support

CERNopenlab

SIEMENS

- > Big data visualization
- Forecast system status and take proper actions in time
- Prevent possible faults and system downtime

Increased System Reliability

- Minimized forced outages
- Complete data analysis
 - Reduced service effort: weeks \rightarrow hours
- 24/7 Expert Knowledge Availability
 - One central knowledge base

Diagnosis support

- > Identify root causes
- > More accurate analysis
- Accelerate analysis
 From weeks to hours
- > Identify hidden patterns

Engineering support

- > Evaluate and improve operational performance
- Increase reliability and efficiency by design
- > Lead control system decisions

Use-cases: a partial list

Online monitoring

CERNopenlab

- Control System Health
- Electrical power quality of service
- Looking for heat in superconducting magnets
- Oscillation in cryogenics valves
- Discharge of superconducting magnets heaters
- Trending and forecast of the control process behavior
- Electron cloud heat load estimation

Faults diagnosis

- Anomalies in the process regulation
- PLC anomalies
- Data loss detection
- Root-cause analysis for complex WinCC OA installations
- Analysis of sensors functioning and data quality
- Analysis of OPC-CAN middleware
- Analysis of electrical power cuts
- Cryogenic system breakdowns
- Engineering design
 - Electrical consumption forecast
 - Efficiency of electric network
 - Predictive maintenance of control systems elements
 - Predictive maintenance for control disks storage
 - Vibration analysis
 - Efficiency of control process
 - -