
Infrastructure Analytics  
for Optimisation
Dirk Duellmann, CERN IT, storage group

Why?
• LHC performance is excellent (and increasing)

• Budgets are expected to stay constant (at best)

• Moore’s and Kryder’s “law” are slowing down

• Several disruptive changes ahead -> model impact 
commercial clouds, disk->flash->NV memory

• experiments and IT are accountable to funding bodies:
throughput per investment?

• quantitatively instead of just qualitatively

• absolute (not just relative) numbers

 Analysis Input Data
(bulk items collected by IT monitoring project)

Subsystem Location Amount
lemon hdfs 78 TB box level

castor hdfs 55 TB tape archive access

syslog hdfs 23 TB unstructured box logs

openstack hdfs 12 TB agile infrastructure

eos hdfs 12 TB file access metrics

perfsonar hdfs small O(10 GB) network link status

batch hdfs 500 GB accounting & queue-config

squid hdfs 110 GB http cache access

exp. dashboard hdfs small (< 1TB) job summaries

exp. file popularity hdfs small O(200GB) user data access

LANdb hdfs small O(100 MB) host,ip,hypervisor, location

hw specs afs 100MB h/w rating per model

(2016)

4

IT Monit.

Metric Collection
• Collection via IT monitoring project

• select and summarise relevant metrics

• Find & remove unexpected / unintended access patterns

• To what level can we trust our metrics & assumptions?

• Evaluate data quality: eg accuracy, units(!)

• data that has not been used quantitatively yet has likely problems

• Simple quantitative cross-checks:

• eg for CPU

• ∑ jobcpu ~ ∑ schedcpu ~ ∑ hostcpu (any significant losses?)

• eg for disk

• ∑ disk I/O ~ ∑ user I/O + ∑ internal I/O (ratio expected?)

5

Connecting Data
• Involved in several experiment performance studies

• Starting point: why do users/service providers see:

• slow file access? inefficient CPU usage?

• differences: Wigner vs CERN, CERN vs T1, etc..

• where is the bottleneck? where should be?

• Connected data from experiment, storage, batch

• connected infrastructure data: LAN db, hardware db

• enables correlation with location, hw type, HEPSPEC

6

Examples: One production task
CPU “Efficiency” versus H/W types CPU Performance Calibration check

I’m off

7

data from Alice  
production in 2016

Model Predictions
• Answer via predictive models:  

can we construct a more performant
system for the same price?

• Simplest case: CPU-bound jobs

• CPU & RAM speed => MC throughput

• More balanced case:

• need to consider:  
CPU, local I/O, LAN I/O, WAN I/O,
network speeds

8

Passive Benchmark
• Basic Idea:

• Take the workload as set of benchmarks
• Assume jobs per task are equal, compare runtime
• Based on existing monitoring logs

• Advantages:
• Zero intrusion, basically no overhead
• Always representative (the benchmark is the workload)

• Application:
• Observe performance during operation
• Compare configurations by performance on the actual workload  

• Accuracy / Precision
• Experiment on LSF dataset: ATLAS and CMS, 3 months
• Equal or better prediction of performance than HepSPEC06
• Precision per node is below 5% error for 98% of nodes

9

PhD th. C. Nieke, TU Braunschweig
accepted @ IEEE Cloud 2017

Next steps:  
Analysis of Disk Failures

• Failures on some 70 k disks (similar O(backblaze))

1: failure impact on service performance

2: comparison of enterprise and consumer disks

3: predictive maintenance

• Using data from:

• existing smart sensors (no systematic collection)

• disk replacement logs (logs are not complete enough)

• disk hardware status repository (does describe purchase
but not status quo)

• logs from EOS & Hadoop clusters

Established collaboration,  
SSRC, UC Santa Cruz

ML job classifier
• Can we automatically classify jobs?

• into: CPU-bound, file-I/O bound, box I/O-bound, site I/O-bound

• Metrics used: experiment task, process I/O, batch cpu stats, EOS (site disk)

• Evaluating: simple cut model and random forrest

• Classifier output is used to produce optimisation hints

• file replication: eg these files (don’t) need additional replicas

• job placement: eg these jobs (don’t) need a local SSD

11

Typical Analysis Pattern: Scatter-Gather
• Preselection/reformat batch (goal: max. throughput)

• “horizontal” scaling allows to skim for useful data -> input for repetitive analysis steps

• “standard” Hadoop chain with Spark works very well

• Interactive analysis & visualisation (goal: min. latency)

• big memory sometimes helps more than many boxes

• analysis language support for parallelisation helps even more

• Ideally both above systems (many boxes - big memory) are integrated

Challenges?
Current resource limit

• People with analysis experience and understanding of end-to-end computing goals

• black box ML may help with some problems

• Analysis software: there is plenty - almost too much - choice

• for statistical analysis - a quality plot and fitting package is still a challenge

• specifically for semi/un-structured infrastructure data

• good language string support: eg factors, regexp, json, jquery

• column store and performant join implementations

• functional languages greatly simplify parallelisation, but can greatly reduce set of contributors.

• Active workbooks with import from spark and export to pdf/html are nice

• but a smooth boundary between interactive and batch mode is still an issue

13

