
Parallelized	Kalman-Filter-Based	
Reconstruction	of	Particle	Tracks	on	

Many-Core	Processors	and	GPUs,	Part	I
CMS Week: April 4, 2017

G. Cerati4, P. Elmer3, S. Krutelyov1, S. Lantz2, M. Lefebvre3, 
M. Masciovecchio1, K. McDermott2, D. Riley2, 
M. Tadel1, P. Wittich2, F. Würthwein1, A. Yagil1

1. University of California – San Diego
2. Cornell University
3. Princeton University
4. Fermi National Accelerator Laboratory

1



Outline

• Project	motivation	and	goals
• Overview	of	Kalman Filter	tracking
• Challenges	and	experimental	setup
• Track	fitting
• Track	building
• Sneak	peak	of	results	so	far	and	things	to	come

2

https://trackreco.github.io/

04	April	2017 Parallel	Tracking	- Part	I



The	Challenge	of	the	HL-LHC

3

Simulation of pile-up = 140 
at CMS in r-z plane 

r

z

• HL-LHC	poses	serious	challenges	to	reconstruction,	and	tracking	will	be	hit	the	hardest
• Combinatorics	from	track	finding	will	be	a	nightmare	for	efficiency,	fake	rate,	and	time

04	April	2017 Parallel	Tracking	- Part	I



A	way	out:	Moore’s	Law

4

• While	relying	on	CPU	clock	speed	scaling	from	Moore’s	
is	certainly	over,	Moore’s	law	still	applies	to	the	
number	of	transistors	in	many-core,	parallel	
architectures

• However,	the	performance	of	serial	applications,	like	
CMS’s	iterative	combinatorial	Kalman Filter	track	
finder,	will	not	scale	unless	redesigned	to	be	run	in	
parallel

Therefore,	we	need	to	adapt	the	serial	algorithms	today	to	the	parallel	
architectures	of	tomorrow

04	April	2017 Parallel	Tracking	- Part	I



Why	the	Kalman Filter?

5

• Naïvely,	a	charged	particle	is	described	by	a	
single	helix
– Only	locally helical:	distortion	from	multiple	

scattering,	energy	loss,	etc.
– KF	provides	robust	treatment	of	material	effects

• Given	robustness	and	expertise	already	
gained	on	KF	tracking,	we	wish	to	extend
knowledge	to	parallel	architectures	

• Project	seeks	to	achieve	same	high	level	of	
physics	performance	already	seen	with	the	
LHC	experiments	while	significantly speeding
up time	spent	in	tracking

04	April	2017 Parallel	Tracking	- Part	I



Kalman Filter	Basics

• Kalman Filter	can	be	seen	as	iterative	
repetition	of	the	same	logic	unit		

• Logic	unit	is	the	base	of	both	track	
fitting and	track	building
• Propagation	and	update	of	track	state	
with	hit	measurements	at	a	given	layer
• Calculations	are	set	of	matrix	operations
on	small	matrices	and	vectors

604	April	2017 Parallel	Tracking	- Part	I



KF	Track	Reconstruction	

• Tracking	proceeds	in	three	main	
steps:	seeding,	building,	and	fitting

• In	fitting,	hit	collection	is	known:	
repeatedly	apply	the	basic	logic	unit

• In	building,	hit	collection	is	
unknown	and	requires	branching to	
explore	many	possible	candidate	
hits	after	propagation

704	April	2017 Parallel	Tracking	- Part	I



Challenges	to	Parallel	Processing

• Vectorization
– Perform	the	same	operation	at	the	same	time	in	

lock-step	across	different	data
– Challenge: branching in	track	building	- exploration	

of	multiple	track	candidates	per	seed

• Parallelization	
– Perform	different	tasks	at	the	same	time	on	

different	pieces	of	data
– Challenge:	thread	balancing	– splitting	the	

workload	evenly	is	difficult	as	track	occupancy	in	
the	detector	not	uniform	on	a	per	event	basis

• KF	tracking	cannot	be	ported	in	straightforward	way	to	run	in	parallel
• Need	to	exploit	two	types	of	parallelism	with	parallel	architectures

Vectorization
804	April	2017 Parallel	Tracking	- Part	I



Matriplex
• Matrix	operations	of	KF	ideal	for	vectorized processing:	however,	requires	

synchronization of	operations

• Arrange	data	in	such	a	way	that	it	can	loaded	into	the	vector	units	of	SNB	and	KNC	with	
Matriplex
– Fill	vector	units	with	the	same	matrix	element	from	different	matrices:	n	matrices	working	in	

synch	on	same	operation

Matrix	size	NxN,	vector	unit	size	n

fa
st
	m

em
or
y	
di
re
ct
io
n

vector	
unit

904	April	2017 Parallel	Tracking	- Part	I



Selected	Parallel	Architectures

1004	April	2017 Parallel	Tracking	- Part	I



Experimental	Setup
Simplified	setup

• Detector	conditions
• 10	barrel	pixel	layers,	evenly	
spaced		
• Hit	resolution	in	r-phi	=	100μm,	z
=	1.0mm
• Constant	B-field	of	3.8T

• Tracks	uniformly	generated	
(uncorrelated)
• One	hit/layer,	no	misses
• No	energy	loss	or	scattering

1104	April	2017 Parallel	Tracking	- Part	I



Track	Fitting
• Track	fitting	ideal	place	to	start:	
repetition of	propagation	and	update	
on	pre-determined	set	of	hits	without	
branching ensures	vectorized
processing

• Parallelization	achieved	by	simply	
dividing	tracks	to	be	fit	evenly	across	
the	number	of	threads	

1204	April	2017 Parallel	Tracking	- Part	I



Track	Fitting	Results:	KNC

13

• Significant speed-up is observed for both vectorization and parallelization
– Similar features on both SNB and KNC
– Vector utilization is roughly 50%
– Parallelization near ideal for 1 thread/core, overhead observed in 2 threads/core

Demonstration of feasibility on fitting, move to track building

arXiv:1409.8213	

04	April	2017 Parallel	Tracking	- Part	I



Caveats	to	previous	slide

14

• Results	are	over	2.5	years	out-of-date

• 1M	tracks/event	is	a	bit	unrealistic…
– Wanted	high	enough	stats	to	yield	“steady-state”	to	balance	out	any	
hiccups	in	processing

– Moving	to	smaller	number	of	tracks	does	impact	performance:	more	
susceptible	to	unlucky	tracks,	thread	imbalance	

• OpenMP to	TBB

• Switched	coordinate	system
04	April	2017 Parallel	Tracking	- Part	I



Track	Building

15

• Track	building	uses	same	core	KF	calculations	as	track	
fitting,	with	two	major	complications	for	vectorizable
operations
– nHits problem:	Hit	set	is	undefined in	update	of	KF	and	

have	to	choose	between	O(104)	hits	per	layer.	
– For	candidates	with	more	than	1	compatible	hit	defined	

by	a	χ2	test,	must	branch and	copy track	candidates

• Problems	can	be	factorized for	impact	on	physics,	
vectorization,	and	parallelization
– First	deal	with	nHits problem	by	just	choosing	best	hit	

from	χ2 test	without	copying	more	than	one	candidate
– Then	deal	with	combinatorial approach	by	capping	

number	of	candidates	to	limit	branching	and	mitigate	the	
effects	of	serial	work	of	copying	candidates	through	the	
use	of		dedicated	methods

04	April	2017 Parallel	Tracking	- Part	I



• First	results	on	track	building	presented	at	CHEP	2015	(arXiv:	1505.04540),	with	subsequent	
presentations	at	CTD	2016	(arXiv:1605.05508)	,	CHEP	2016	(arXiv:1702.06359),	and	CTD	2017

• Regular	profiling	with	VTune Hotspots revealed	bottlenecks	mainly	from	memory	operations	

• Fixes	led	to	independent,	multiplicative	speedups
– Vectorize copying-in	tracks	into	Matriplex with	systematic	scatter/gather	intrinsics
– Avoid	resizing	of	hit	indices	vector	inside	track	object
– Unnecessary	instantiation of	objects	used	every	event	could	be	reset and	recycled
– Reduced	the	size of	track and	hit objects,	by	20%	and	40%,	respectively
– Limit	variable	scope as	much	as	possible,	as	well	as	decorating	everything	with “const”
– Convert	all	unintentional	double precision	operations	to	single precision	throughout	entire	code

• Mitigate	impact	from	serial	work	of	copying	track	candidates	in	combinatorial approach by	
moving	all	copying	outside of	vectorizable operations:	“Clone	Engine”

16

Memory	issues	and	workload	balancing

04	April	2017 Parallel	Tracking	- Part	I



Handling	Multiple	Track	Candidates:	First	Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2 <	cut

go	to	next	hit

sort	temp	vector,	and
clean	copies	>	N

fail

pass

candidates	ready		
for	next	layer

all	candidates	in	layer	
for	all	seeds	processed

N.B.When	processing	tracks	in	
parallel	with	Matriplex,	copy	+	
update	forces	other	processes	
to	wait!		
èWe	need	an	other	approach

copy	candidate
update	with	hit

push	into	temp	vector

χ2? χ2?
Fail
χ2?

PassPass
χ2?
Pass

1704	April	2017 Parallel	Tracking	- Part	I



Optimized	handling	of	multiple	candidates:	“Clone	Engine”

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2 <	cut

go	to	next	hit

add	entry	in	bookkeep list

sort	bookkeep list,	
copy	only	the	best	N	

fail

pass

candidates	still	
need	update

all	candidates	in	layer	
for	all	seeds	processed

update	candidate	with	hit	
from	previous	step

N.B.	Clone	Engine	approach	
should	(and	does)	match	
physics	performance	of	
previous	approach!

1804	April	2017 Parallel	Tracking	- Part	I



Track	Building	Results:	KNC
• Simplified	barrel-only	ToyMC geometry	with	
10k	tks/evt

• Scaling	tests	with	3	building	algorithms
• Best	Hit	- less	work,	recovers	fewer	tracks	(only	

one	hit	saved per	layer,	for	each	seed)
• Standard	&	Clone	Engine	-

combinatorial, penalized	by	branching	&	copying

• Vectorization	- speedup	is	limited	in	
all methods
• Faster	by	40-50% on	both	platforms

• Multithreading with	Intel	TBB - speedup	is	
good
• Clone	Engine	gives	best	overall	results
• With	120	KNC	threads,	CE	speedup	is	65x

Ve
ct
or
iza

tio
n

Pa
ra
lle
liz
at
io
n

Absolute	Time Relative	Speedup

1904	April	2017 Parallel	Tracking	- Part	I



Conclusions	and	Outlook
• Initial	tests	for	track	building	show	good	performance	for	both	vectorization
and	parallelization on	KNC

• Teasers	for	next	round	of	presentations:
• Approaching	CMSSW-like	track	building	
• SNB	vs.	KNC	vs.	KNL	track	building	performance
• GPU	fitting	and	building	with	a	Matriplex-like	approach

• Major	developments	currently	in	the	pipeline:
• Unified	barrel	and	endcap	geometry	to	perform	building	across	the	full	detector	
• Multiple-events-in-flight	to	recover	performance	for	small	numbers	of	tracks/event
• Iteration0-like	seeding	to	be	used	for	testing	end-to-end	tracking

2004	April	2017 Parallel	Tracking	- Part	I



Backup

2104	April	2017 Parallel	Tracking	- Part	I



Track	Building:	Physics	Performance	– Efficiency

22



Track	Building:	Physics	Performance	– Fake	Rate

23



Track	Building:	Physics	Performance
Number	of	Hits	per	Track	

24


