

INSTITUTE OF APPLIED PHYSICS RUSSIAN ACADEMY OF SCIENCES

Status of new developments in the field of highcurrent gasdynamic ECR ion sources at the IAP RAS

V.A. Skalyga^{1, a)}, S.V. Golubev¹, I.V. Izotov¹, M.Yu. Kazakov¹, R.L. Lapin¹, S.V. Razin¹, A.V. Sidorov¹, R.A. Shaposhnikov¹, A.F. Bokhanov¹ and O. Tarvainen²

¹Institute of Applied Physics of Russian Academy of Sciences, Nizhny Novgorod, Russia ²University of Jyväskylä, Department of Physics, Accelerator Laboratory, Jyväskylä, Finland

Part of the work presented is being supported in frame of realization of Federal targeted program

R&D in Priority Fields of the S&T Complex of Russia (2014-2020)

contract #14.604.21.0195 (unique identification number RFMEFI60417X0195)

SMIS-37 gasdynamic high-current ion source

Frequency 37,5 or 75 GHz

Power up to 100 kW

Pulse duration 1 ms

Trap magnetic field up to 5 T

Unique plasma parameters

 $(N_e > 10^{13} \text{ cm}^{-3}, \tau \approx 5 \div 50 \text{ } \mu\text{s}, T_e \approx 50 \div 300 \text{ eV})$

High current density (j $\approx 100 \div 800 \text{ mA/cm}^2$)

Low emittance values

Proton beams production

- ✓ Ion beam current with 1 cm aperture extraction ~ 500 mA
- ✓ Normalized RMS emittance below 0.1 π'mm'mrad
- ✓ Very low molecular fraction
- ✓ Possibility to switch into CW operation mode

Gasdynamic ion source for neutron production

Neutron producing reaction: $D(d,n)^3He$

Ion beam current 1 A

Beam energy 100 keV

Fast neutron flux density at the target $10^{11} \text{ s}^{-1}\text{cm}^{-2}$ (5·10¹² – 1·10¹³ s⁻¹ for tritium target)

Neutron tomography

Neutron flux properties for tomography:

Flux density $10^8 - 10^9 \, \text{s}^{-1} \text{cm}^{-2}$

Collimation (L/D): 100 -400

Beam focusing modeling with IBSimu

Beam size in the focal plane could be $\sim 100 \ \mu m$

First experiments on beam focusing at SMIS 37

- ✓ 1.5 T magnetic lens
- ✓ Beam size < 1mm

Present state of developments

Problems

- Low repetition rate
- High level of impurities/difficulties with plasma parameters control
- High microwave power and complicated microwave sources
- Search for new applications

Solutions

- Transition to CW operation
- Decrease of the total power for plasma heating
- Decrease of the plasma volume
- Tests of different magnetic configurations

Single solenoid discharge – a away to reduce the source size

Cusp with closed ECR surface

- Quasigasdynamic confinement with additional hot electron trapping
- Preliminary modeling of Grenoble 60 GHz source

First attempt for H- production

New facility for CW operation

Work is being performed in frame of realization of federal targeted program R&D in Priority Fields of the S&T Complex of Russia (2014-2020) contract #14.604.21.0195 (unique identification number RFMEFI60417X0195)

Room for the new source

Work is being performed in frame of realization of federal targeted program R&D in Priority Fields of the S&T Complex of Russia (2014-2020) contract #14.604.21.0195 (unique identification number RFMEFI60417X0195)

Thank you!