

Experimental benchmarking of the EM-PIC-MCC code NINJA and its application for simulating the Linac4 H⁻ ion source plasma

S. Briefi^{1,2}, S. Mattei³, D. Rauner^{1,2}, J. Lettry³ and U. Fantz^{1,2}

¹ AG Experimentelle Plasmaphysik, Universität Augsburg, 86135 Augsburg

² Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching

³ Linac4 ion source team, CERN-ABP, 1211 Geneva 23

The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG) for their support within the project BR 4904/1-1.

© Stefan Briefi

Setup of the Ion Source

- For dedicated optimization of H⁻ yield detailed knowledge of plasma parameters (n_e, T_e, T_{vib}, n_H) mandatory
- Ion source design very compact \rightarrow bad accessibility for diagnostics
 - Optimization mainly based on variation of external parameters
 - Optical emission spectroscopy yields line-of-sight integrated results
- Development of electromagnetic PIC Monte Carlo collision code NINJA MATTEL ET AL., J. COMPUT. PHYS. 350 891 (2017)
 - Self-consistent calculation of plasma parameters as result of the RF field
 - Spatially resolved investigations & dedicated process evaluations possible
- Benchmark measurements of NINJA
 - At diagnostically well-accessible lab experiment CHARLIE
 - At Linac4 ion source

- 2.5 D Particle-In-Cell module
 - 2D EM field due to azimuthal symmetry, 3D3V particle dynamics
 - H⁺, H₂⁺, H₃⁺, H⁻ and electrons considered
 - Implicit time integration scheme
 - \rightarrow Relaxes numerical requirements on Δt and Δx considerably
 - \rightarrow Enables simulation of high-density ion source plasma
- Monte Carlo Collision module
 - More than 200 reactions
 - Electron/ion neutral, electron ion, Coulomb collisions

Benchmarking at CHARLIE – Profiles

- Good agreement of axial n_e and T_e profiles
- Measured radial emission profiles also coincide with NINJA results (not shown)

→ For CHARLIE: feedback loop plasma ↔ RF circuit required
 → Linac4 strongly coupled

- Electron energy decreases strongly towards extraction aperture
 - \rightarrow Magnetic filter field works in the expected way
- EEDF very close to Maxwellian

Excellent agreement both in trends and absolute values

Benchmark of absolute plasma parameter values successful

Assessment of processes w.r.t. H⁻ yield

- H⁻ yield determined by processes in front of extraction aperture
 - NINJA results averaged in this region
 - Process assessment via 0D model balancing H⁻ production (only volume) and destruction rates RAUNER ET AL., AIP CONF. PROC. 1655 020017 (2015)
- Experimentally no change in plasma parameters with Caesium
 → H⁻ destruction processes similar for volume and surface mode

Electron stripping Mutual neutralization Associative Detachment Collisional Detachment

 $H^{-} + e^{-} \rightarrow H + 2e^{-} \sim 10\%, \text{ due to filter field}$ ion $H^{-} + H^{+} (\text{ or } H_{2}^{+}, H_{3}^{+}) \rightarrow H + H (\text{ or } H_{2}, H + H_{2}) \sim 25\%$ hment $H^{-} + H \rightarrow H_{2} + e^{-}$ $H^{-} + H \rightarrow H + H + e^{-}$ $H^{-} + H_{2} \rightarrow H + H_{2} + e^{-} < 1\%$

Assessment of processes w.r.t. H⁻ yield

- Linac4 operation in volume mode
 - Extracted H⁻ current peaks at varying RF power at 40 kW
 - Detailed evaluation of 0D model for increasing power
 - Increasing T_{vib}
 - Increased dissociation
- \rightarrow Higher H⁻ production rate
- \rightarrow Reduced H⁻ production rate
- → Higher H⁻ destruction rates due to collisions with H atoms
- Linac4 operation in surface mode
 - H⁻ production on caesiated surface cannot be modelled by NINJA
 → Mesh too coarse
 - Detailed investigation only possible with beam formation codes
 - \rightarrow Plasma parameters in front of extraction aperture required as input

These parameters can be provided by NINJA

- EM-PIC-MCC code NINJA has been developed for detailed investigation and optimization of the Linac4 ion source plasma
- Benchmarking of the code performed at
 - CHARLIE experiment
 - → Successful benchmark of axial and radial profiles
 - \rightarrow Absolute values and trends deviate due improper coupling regime
 - Linac4 ion source: successful benchmark of absolute values and trends
- Assessment of processes with respect to H⁻ yield
 - Volume mode: peaking behavior of extracted H⁻ current could be explained
 - Surface mode:
 - \rightarrow Detailed investigation only possible with beam formation codes
 - → NINJA can provide required input plasma parameters