

FIRST MEASUREMENTS OF BEAM PLASMA IN NIFS TEST STAND

E. Sartori^{1,3}, H. Nakano², P. Veltri^{1,4}, M. Kisaki², A. Pimazzoni¹, M. Brombin¹, V. Antoni¹, K. Ikeda², K. Tsumori² and G. Serianni¹

¹Consorzio RFX, Corso Stati Uniti 4 – 35127, Padova (Italy) ²National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292, Japan ³University of Padova, Dept. of Management and Engineering, Strad. S. Nicola 3, 36100 Vicenza, Italy ⁴INFN-LNL, Viale dell'Università 2, I-35020, Legnaro (Italy)

- Beam-generated plasma important for
 - Space Charge Compensation (propagation, optics & focusing)
 - positive ions backstreaming in the accelerator (heat load)
 - neutralization (efficiency)
 - Ion beam tranport al low pressures (photoneutralizer?)
- Effect of background gas pressure
- Multibeamlet H⁻ beam for Neutral Beams
- Experimental study in multibeamlet negative ion beams: *R&D Negative Ion Source* in NIFS, Japan
 - Retarding Field Energy Analyser was designed and build to the purpose
- PIC Numerical simulations to support the experimental campaign

EXPERIMENTAL SETUP: RNIS at NIFS

- H- beam
- Cesiated surface-plasma negative ion source
- Hundreds of independent beamlets
- Beam energy for this campaign: ~48kV

EXPERIMENTAL SETUP: BEAMLINE DIAGNOSTICS

- H- beam
- Cesiated surface-plasma negative ion source
- Hundreds of independent beamlets
- Beam energy for this campaign: ~48kV

EXPERIMENTAL SETUP: BEAMLINE DIAGNOSTICS

- H- beam
- Cesiated surface-plasma negative ion source
- Hundreds of independent beamlets
- Beam energy for this campaign: ~48kV

EXPERIMENTAL SETUP: BEAMLINE DIAGNOSTICS

ACCELERATOR & MULTI-BEAMLET PATTERN

Four multiaperture electrodes:

- Plasma Grid (PG)
- Extraction Grid (EXG) Steering Grid (ESG)
- Grounded Grid (GG)

ACCELERATOR & MULTI-BEAMLET PATTERN

Four multiaperture electrodes:

- Plasma Grid (PG)
- Extraction Grid (EXG) Steering Grid (ESG)
- Grounded Grid (GG)

PG mask: reduced number of apertures:

- 30 beamlets
- Two 5x3 beamlet
 groups

BEAMLET MONITOR

- graphite tiles, 45° to beam axis
- Insulated,

V_{cal}

- Secondary electron emission: can be biased V_{cal}
- Two independent current measurements I_1 , I_2

Emanuele Sartori

BEAMLET MONITOR

 Calibration of IR image resolution: ~2 pixel/mm (along transverse direction x)

Emanuele Sartori

GAS INJECTION in DRIFT TUBE

- Gas injection nozzle
- Control the gas density in drift region separately from the ion source

1.8 mPa < p < 30 mPa

4-GRIDS RETARDING FIELD ENERGY ANALYSER

Discriminates ions according to their energy. Measures the integral ion parallel energy distribution:

Current-voltage nume characteristic of a

numerical differentiation of the characteristic

Emanuele Sartori

4-GRIDS RETARDING FIELD ENERGY ANALYSER

Collects positive ions exiting from the compensation plasma: integral parallel velocity distribution

$$\dot{v}_c = j_0 q_i K \int_u^\infty v_{//} f(v_{//}) dv_{//}$$

Non collisional sheath, Maxwellian plasma:

$$j_c = K \exp\left(-\frac{q_i(V_R - V_P)}{kT_i}\right)$$
, for $V_R > V_P$

Complex transfer function may deform characteristics

Emanuele Sartori

ADDITIONAL DIAGNOSTICS: NUMERICAL SIMULATION

- 2D 3V PIC-MCC code, GPGPU (CUDA)
- 6 species: e, H⁻,H,H⁺,H₂⁺,H₃⁺
 26 processes differential cross-sections
- Beam dump with bias (V_{cal}) and secondary emission electrons
- Acceleration field: $V_0 = -V_{acc} \frac{L}{L_{EXG-GG}}$

ADDITIONAL DIAGNOSTICS: NUMERICAL SIMULATION

Emanuele Sartori

Particle number map t=0 us

ADDITIONAL DIAGNOSTICS: NUMERICAL SIMULATION

Emanuele Sartori

EXPERIMENTAL RESULTS:

- 1) Plasma potential
- 2) Temperatures
- 3) Effect on beam optics

1) RFA CHARACTERISTICS: PLASMA POTENTIAL

Emanuele Sartori

1) RFA CHARACTERISTICS: PLASMA POTENTIAL

ELECTRON MODE

▲ electron mode, beam dump bias5 0 V

●,▲ calorim. 50V Plasma potential from ion mode: 0 < V_p < V_{cal}

, calorim. 0V Plasma potential from electron mode: $V_p < V_{cal} = 0V$

C,

Constant of the second second

Energy distribution of H_2^+ and protons is overlapped

PIC-MCC: energy distribution of particles exiting from side walls

Emanuele Sartori

3) EFFECTS ON BEAM: MULTIBEAMLET OPTICS

COLOR STATE

Fitting ΔT profile produce **beamlet centre** : beamlet are getting closer one to the other

The centre of the edge beamlet footprint moves by about 0.5 mm/25mPa

FILTER BEAM PULSES:

- arc power within +/- 5%,
- of +/- 3.5% with respect to the average ΔT was chosen
- initial temperature of the graphite tile was within +/- 4% with respect to the average one

3) EFFECTS ON BEAM: SINGLE BEAMLET OPTICS

Fitting ΔT profile produce **beamlet centre** : beamlet are getting closer one to the other Fitting ΔT profile produce **beamlet width**: focusing effect increasing pressure

3) EFFECTS ON BEAM: SINGLE BEAMLET OPTICS

Fitting ΔT profile produce **beamlet centre** : beamlet are getting closer one to the other Fitting ΔT profile produce **beamlet width**: focusing effect increasing pressure

Multi-beamlet → decreasing repulsion - transverse electric field **1 V/cm** along 1m

Single-beamlet \rightarrow focusing - vary compensation degree ψ by +0.7%

Very small effect but the trend is always present – hot to distinguish between space charge effects inside the accelerator or after?

Ray-tracing iterative poisson solver SLACCAD simulations of the accelerator, including stripping: optics getting worse when increasing tank pressure

3) EFFECTS ON BEAM OPTICS: PIC-MCC

SUMMARY

- Beam plasma: plasma potential set by beam dump bias (lower than calorimeter potential due to secondary emission electrons); cold H₂⁺ and relatively hot H⁺
- Beam focusing when increasing tank pressure from 2 to 30mPa: small multi-beamlet steering effect (0.5mm/m); small single-beamlet focusing by 0.5mrad (SLACCAD calculations gives increasing divergence when increasing stripping losses!)
- PIC-MCC in agreement w/ measurements: scaling to ITER HNB and the two prototypes SPIDER and MITICA

ITER BEAM SOURCE (SPIDER) – SEPT 2017

ITER NEUTRAL BEAM TEST FACILITY - PADOVA

Reaction	notes
$\underline{H^{-}}, H_2 \rightarrow \underline{H^{+}}, \underline{2e}, H_2$	Fast electron
$\underline{H^{-}}, H_2 \rightarrow \underline{H}, \underline{e}, H_2$	fast electron
$\underline{H^{-}}, H_2 \rightarrow \underline{H^{-}}, H_2^+, e$	slow ion at RT, Rudd electrons
$\underline{H^{-}}, H_{2} \rightarrow \underline{H^{-}}, H^{+}, e, H$	
$\underline{H^{-}}, H_{2} \rightarrow \underline{H^{-}}, H^{+}, H^{+}, 2e$	
$\underline{H}, H_2 \rightarrow \underline{H^+}, \underline{e}, H_2$	
$\underline{H}, H_2 \rightarrow \underline{H^-}, H_2^+, e$	slow ion at RT, Rudd elecrons
$\underline{H}, H_2 \rightarrow \underline{H^-}, H_2^+$	slow ion at RT
$\underline{H}, H_2 \rightarrow \underline{H}, H^+, e, H$	slow ion at 7eV, peak at 90° and 270°
$\underline{H}, H_2 \rightarrow \underline{H}, H^+, e, H$	cold slow ions
$\underline{H}, H_2 \rightarrow \underline{H}, H^+, H^+, 2e$	slow ions at 9eV, sotropic
$\underline{H^+}, H_2 \rightarrow \underline{H^+}, H_2^+, e$	slow ion at RT, Rudd elecrons
<u>H^+</u> , $H_2 \rightarrow \underline{H}$, H_2^+	slow ion at RT
$\underline{H^+}, H_2 \rightarrow \underline{H^+}, H^+, e, H$	
<u>H</u> ⁺ , H ₂ \rightarrow <u>H</u> ⁺ , H ⁺ , H ⁺ , 2e	slow ions at 10eV, isotropic
<u>H^+</u> , $H_2 \rightarrow \underline{H^+}$, H_2 (elastic)	
$H_2^+, H_2 \rightarrow H^+, H, H_2$	
$H_2^+, H_2 \rightarrow H_3^+, H$	Ion at RT (rotational exc.)
$H_2^+, H_2 \rightarrow H_2, H_2^+$	slow ion at RT
H_2^+ , $H_2 \rightarrow H_2^+$, H_2 (elastic)	
$H_2^+, H_2^- \rightarrow H_2^+, H_2^-$ (elastic)	
$H_3^+, H_2 \rightarrow H, H_2^+, H_2$	
$H_3^+, H_2 \rightarrow H_2, H^+, H_2$	
$H_3^+, H_2 \rightarrow H^+, H_2, H_2$	
$H_3^+, H_2 \rightarrow H_2^+, H, H_2$	
H_3^+ , $H_2 \rightarrow H_3^+$, H_2 (elastic)	

Emanuele Sartori