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Improved understanding of the Cs dynamics in large H™ sources
by combining TDLAS measurements and modelling

Christian Wimmer, Alessandro Mimo, Maria Lindauer, Ursel Fantz and IPP-NNBI-team
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The ELISE test facility

ELISE test facility with a %:-size ITER source

» Provide input for design, commissioning and operation
of ITER NBI systems and European test facilities
» Demonstrate ITER parameters in large sources

= Extracted currents (ions and electrons)
= Beam homogeneity

» Develop most efficient source operation scenarios

Parameter and targets

RF power = 2 x 180 kW in 4 drivers
A,, =1000 cm?, uniformity > 90%
[

=20A, I/l <1at0.3Pa

ion,acc

Uy, =60KV, U, <12kV

Plasma: 3600 s
Beam :10 s every 150 s (HV)

Plasma grid

1.0m

Bias plate

external
magnets
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Phases of Cs dynamics and its modelling W

Vacuum phase Plasma phase Extraction phase

4=mm Cs from the oven é Cs from

plasma erosion

desorption < plasma

redistribution

- Back-streaming H+

T e
Sputtered Cs
N R4

= Pressure 10°-10*Pa = Pressure 0.3 Pa = Additional source term
+e
= Ballistic transport of Cs = Both Cs and Cs* of Cs ar?d Cs™:
N sputtering due to
(collisions can be neglected) = Erosion of Cs back-streaming ions
= Dynamics depends on oven due to the plasma
evaporation and sticking and redistribution
coefficient via collisions

(temperature, impurities )

CsFlow3D Monte Carlo transport code developed to study Cs dynamics in the source

(i.e. fluxes and coverage on the surfaces). Benchmarked against the prototype source data.
Now predictions for ELISE: comparisons with experimental data from TDLAS.
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Diagnostics for Cs — Tuneable Laser Absorption Spectroscopy TDLAS W

Measurement of the neutral Cs density in all 3 phases

Cs-D, resonant line (852 nm) 2 lines of sight close to the grid
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Analysis of Doppler broadening of the absorption lines

= Temperature of neutral Cs particles
BUT: Zeeman splitting of absorption lines for high magnetic field strength
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TDLAS — Measurement of Cs density and temperature of Cs particles W

Cs density
Variation of power and pressure
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T=960 K

AL =2 pm
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Measured Cs-D, line profile [a.u.]
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Vacuum: typical AL =1.1-1.2 pm
= T= 350K*50K
Plasma: Al =2pm
= T= 960 K+ 100 K
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Comparisons of experiment with simulation W

20 s plasma pulse with and without extraction

Experiment: 40 kW/driver at 0.3 Pa, Simulation: 20 redistribution pulses,
typical Cs conditioning pulse 200 s vacuum phase, Cs evap. 5 mg/h/oven
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Trend and absolute values during the pulse in agreement
Cs density higher during extraction phases
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Measurement — Cs release due to back-streaming ions
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CsFlow3D - Simulation of long pulses W

Simulation of the average Cs flux onto one beamlet group
» Several beam blips (10 s every 50 s) during 400 s plasma

= Cs ions dominate the total flux with 70%

= Fast decrease with time but back streaming ions provide additional Cs
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CsFlow3D - Simulation of long pulses W

Simulation of the average Cs flux onto one beamlet group
» Several beam blips (10 s every 50 s) during 400 s plasma

= Cs ions dominate the total flux with 70%

= Fast decrease with time but back streaming ions provide additional Cs

After 400 s plasma
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CsFlow3D - Simulation of long pulses W

Simulation of the average Cs flux onto one beamlet group
» Several beam blips (10 s every 50 s) during 400 s plasma

= Cs ions dominate the total flux with 70%

= Fast decrease with time but back streaming ions provide additional Cs
» Continuous extraction = still not sufficient to stabilize Cs flux

After 400 s plasma
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CsFlow3D - Simulation of long pulses W

Simulation of the average Cs flux onto one beamlet group
» Several beam blips (10 s every 50 s) during 400 s plasma

= Cs ions dominate the total flux with 70%

= Fast decrease with time but back streaming ions provide additional Cs
» Continuous extraction = still not sufficient to stabilize Cs flux
» Unlimited Cs reservoirs in the back-plate: higher and stable flux
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Experiment — Cs line profile during long pulses W

External magnets at the lateral walls gives field strengths up to 300 G
» Absorption lines affected by Zeeman splitting
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Experiment — Cs line profile during long pulses W

External magnets at the lateral walls gives field strengths up to 300 G

» Absorption lines affected by Zeeman splitting

» Comparisons of absorption spectra with and w/o external magnets
= Line splitting is evident in long pulses with magnets

ELISE #23408 vylo (;lxterpal r'naqr'\ets ELISE #23406 with external magnets
0.6 s, vacuum _ 0.6 s, vacuum _
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Experiment — Cs line profile during long pulses W

External magnets at the lateral walls gives field strengths up to 300 G

» Absorption lines affected by Zeeman splitting

» Comparisons of absorption spectra with and w/o external magnets
= Line splitting is evident in long pulses with magnets

ELISE #23408 vylo (;lxterpal r'naqr'\ets ELISE #23406 with external magnets
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Zeeman effects gives a spatial resolution along the lines of sight

Majority of Cs is situated close to the lateral wall = effect on the performances?
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Experiment — Cs line profile during long pulses m

Zeeman effect gives a spatial information along the lines of sight
Pre= 40 kW /driver, U, = 7 kV
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First beam blip ( < 20 s) correlates well with detected neutral Cs
BUT > 1 beam blip: correlation lost as neutral Cs is located near the walls.

= Depletion of neutral Cs in front of the grid !
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Conclusions W

New insights in Cs dynamics for large sources

v No significant vertical asymmetry of Cs distribution

v" Influence of the wall temperature (strong reactivity of Cs with impurities)

v Back-streaming ions can be a relevant Cs source term: are they affected by the optics?
v Neutral Cs temperature in vacuum (= 350 K) and in plasma (= 1000 K)

v With external magnets: Zeeman effect gives a spatial resolution along the line of sights.

v Comparisons with simulations: CsFlow3D can be used as a predictive tool

!

TDLAS shows a depletion of neutral Cs in the center of the source...

How to bring Cs/Cs+ onto the large PG during long pulses?

Alternative solutions need to be identified, since Cs evaporation cannot be increased
further (already at the operative limit for breakdowns).
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Experiment — Long pulse behaviour W

General trends of the Cs density during long pulses

Experimental TDLAS time trace Vacuum (~10° mbar)
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Fast decrease of neutral Cs densit I
. . Y Oscillations = Temperature effects
during the beginning of the pulse
(= factor 3in=505) » Cs density correlates with
/ wall temperature
Back-streaming ion effect = Density > 103 times lower than
during the extraction phases predicted (Cs vapor pressure)

= Strong reactivity with impurities
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