Deuterium Results at ELISE

W. Kraus

for the NNBI group

Max-Planck-Institut für Plasmaphysik, Garching, GERMANY
Since 2013 at IPP:

Test of a RF driven negative ion source of half size of the ITER sources

which are under construction at NBTF (Padua) for the heating injector (commissioning SPIDER in 2018) and at ITER India for the diagnostic injector.
Goal of the ELISE experiment

• Gain experimental experience with a negative RF source of ITER relevant dimensions.

• Identify and solve technical issues of the operation at high power and in long pulses, the solutions to be implemented into the design of the ITER size sources.

• Find physical solutions to achieve the challenging ITER requirements

 32.9 mA/cm² H⁻ extracted for 1000 s

 28.6 mA/cm² D⁻ extracted for 3600 s

both at 0.3 Pa and with an electron/ion ratio below 1.
Outline

• The ELISE source
• Technical improvements for high power and long pulse operation
• Conditioning and results in hydrogen
• Deuterium results at elevated Cs density
• Asymmetry of the co-extracted electrons
• Dynamics of the electron currents with pulsed beam extraction
• Conclusion
The ELISE source

RF source with 4 drivers (⌀ 300 mm) supplied with two 150 kW/1 MHz RF generators

- Plasma expands into a volume of $0.87 \times 1 \text{ m}^2$
- **Continuous plasma operation** up to 1 h
- Negative ions produced by *surface conversion* on the plasma grid surface covered by caesium
- Plasma grid positively biased to reduce current of co-extracted electrons
- 2 Cs ovens
- *Filter field* generated by the PG current of up to 4 kA (4 mT maximum field), return connectors close to the drivers

Source diagnostics: OES, Langmuir probes, laser absorption spectroscopy
ELISE beam extraction

3 grid extraction system:

• 640 apertures (Ø 14 mm) in 8 beam let groups
• 985 cm² in total,
• design close to ITER
• max 60 kV/20 A accelerated
• Pulsed beam extraction with duty cycle 10s/180s
• Top and bottom half of the extraction grid insulated

=> electron currents measured separately (not foreseen for the ITER source)

Beam diagnostics: current measurements, calorimeter, tungsten wire calorimeter, beam emission spectroscopy
Outline

• The ELISE source
• Technical improvements for high power and long pulse operation
• Conditioning and results in hydrogen
• Deuterium results at elevated Cs density
• Asymmetry of the co-extracted electrons
• Dynamics of the electron currents with pulsed beam extraction
• Conclusion
Major technical improvements

- **Electromagnetic shields** EMS (2013)
 - ⇒ No mutual inductance of the drivers
 - ⇒ prevent damage of the internal Faraday shields

 Active cooling for CW operation

- **Solution of the problem of RF breakdowns** at the RF coil (2016)

 Reduction of E field between RF coil and insulator by using quartz and keep 2 mm distance to the insulator

 ⇒ Reliable operation at high power

- Dispenser Cs ovens replaced by **liquid Cs ovens** (2016)

 ⇒ higher evaporation rate enables long pulses

- **Solid-state RF amplifiers** (2017)

 Replaces self-excited oscillators

 ⇒ Stable frequency and better matching
Improvement of the source performance and long pulse stability: Magnetic filter field

Field strengthened by permanent magnets at the lateral sides (2015)

⇒ Reduction of j_{el} and only moderate reduction of j_{ion}

⇒ Higher stability of j_{el} in long pulses in particular in deuterium
Outline

• The ELISE source
• Technical improvements for high power and long pulse operation
• Conditioning and results in hydrogen
• Deuterium results at elevated Cs density
• Asymmetry of the co-extracted electrons
• Dynamics of the electron currents with pulsed beam extraction
• Conclusion
Cs conditioning

Cs evaporation and distribution

=> Development of conditioning procedures

Parameters

• Cs evaporation rate,
• pulse duration and interruption time,
• bias current,
• temperatures of wall and plasma grid

⇒ Improvement within a day and day by day
⇒ Conditioning necessary after long pulses
⇒ Limited reproducibility

Conditioning in deuterium in 10 s pulses at moderate power after 2 months break
Results in hydrogen: Short pulses

30.4 mA/cm² (29.8 A) and \(j_{\text{el}}/j_{\text{ion}} = 0.4 \)

at 0.3 Pa, \(U_{\text{ex}} = 10 \text{ kV} \) and 300 kW total power

Ion current limited only by HV power supply

- 33 mA/cm² required for ITER would be achievable with < 85 kW/driver (for ITER 100kW/driver available)
- Electron/ion ratio well below 1

\[j_{\text{el}}/j_{\text{H}} < 0.75 \]
Results in hydrogen: Long pulses

Currents of co-extracted electrons increase from beam pulse to beam pulse

Power of the electron current on the extraction grid limited to < 125 kW/grid half

Higher load on the top grid due to the plasma asymmetry
⇒ RF power has to be reduced
⇒ Achievable ion currents in hydrogen below ITER value:
 \[22 \text{ mA/cm}^2\] and
 \[j_{el}/j_{ion} < 0.75\] for 1160 s
Outline

• The ELISE source
• Technical improvements for high power and long pulse operation
• Conditioning and results in hydrogen
• Deuterium results at elevated Cs density
• Asymmetry of the co-extracted electrons
• Dynamics of the electron currents with pulsed beam extraction
• Conclusion
Short pulses in deuterium

Difference to hydrogen:
- Much higher asymmetry of the electron currents
- Steeper increase of the electron currents on the top grid
- Much more Cs necessary (10x higher Cs density)
- Higher filter field necessary to suppress \(I_{el} \) (reduces also \(I_{ion} \)), maximum field at the PG

 \[2 \text{ mT (hydrogen)} \Rightarrow 3.5 – 4.5 \text{ mT (deuterium)} \]

Best pulse: 22.0 mA/cm\(^2\) for 6.4 s limited by \(I_{el,top} \)

Asymmetry of \(I_{el} \) confirmed by probe measurements:
Bottom: characteristics of an ion/ion plasma

Beam symmetry measured beam diagnostic:
\(I_{ion,top} \) is almost equal to \(I_{ion,bot} \)
but different beam divergence

\[\Rightarrow \text{Poster F. Bonomo Tu_51} \]
Main problems in long pulses:

- Asymmetry of the electron currents limits the RF power
- Increasing electron currents due to depletion of Cs from the plasma grid (change of work function)

 => Conditioning with highest possible Cs flux
- Higher Cs density leads to HV breakdowns, HV deconditioning of the extraction system and RF matching problems

$J_{\text{ion}} > 15.4 \text{ mA/cm}^2$, $j_{\text{el}}/j_{\text{ion}} < 0.7$

achieved with liquid Cs oven,
with the dispenser oven only 6 mA/cm2
Outline

• The ELISE source
• Technical improvements for high power and long pulse operation
• Conditioning and results in hydrogen
• Deuterium results at elevated Cs density
• Asymmetry of the co-extracted electrons
• Dynamics of the electron currents with pulsed beam extraction
• Conclusion
Installation of vertical potential rods to change the plasma drift

Reason for asymmetric electron currents are vertical xB-drifts

Six rods placed between the beamlet groups perpendicular to the magnetic filter field

Goal

- Reduction of the electron density in front of the plasma grid
- Lower power load on the plasma grid

Similar rods had been successfully tested in a smaller source (1/8 of the ITER size)

The potential with respect to the plasma grid can be changed.
Plasma density w/wo rods

Reduction of the plasma density in particular at the top side

Much higher symmetry
Shorts pulses in D$_2$ with rods

- Best results achieved with rods on PG potential
- Electron currents are lower and more symmetric
- Lower electron currents allow higher power
 => Best pulse: 25 mA/cm2 for 10s
- $I_{el, top}$ still increasing at high power
- No saturation of the ion current

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Graph showing current and electron-ion ratio vs. total RF power.}
\end{figure}
Improvement achieved in the 2017 deuterium campaign by

- High Cs density
- Refined conditioning procedures
- Potential rods
Outline

• The ELISE source
• Technical improvements for high power and long pulse operation
• Conditioning and results in hydrogen
• Deuterium results at elevated Cs density
• Asymmetry of the co-extracted electrons
• Dynamics of the electron currents with pulsed beam extraction
• Conclusion
Best long pulse in D$_2$

19 mA/cm2 for 2700 s

66 % of ITER requirement

- Almost no electron current in the first beam pulse
- Dynamic within the other beam pulses possibly due to sputtering of Cs from the source backplate by backstreaming ions

⇒ results of pulsed extraction not transferable to cw extraction

⇒ Talk U. Fantz on Tuesday
Future experiments to improve the long pulse stability

- Best results were achieved by high caesium density in the plasma to generate a “Cs reservoir”.
- Raising the caesium density during the pulses did not affect the currents (Cs ions cannot reach the positively biased plasma grid).

=> Control of Cs coverage of the plasma grid during long pulses is required to compensate the Cs depletion

By reduction of the PG bias between the beam blips the performance was improved

=> Acceleration of Cs ions towards the PG overcome the potential barrier can be a solution
Considerable progress has been made towards the ITER requirements for the deuterium ion current densities, 66% have been reached in long pulses.

The source performance is in long pulses limited by the increase of the electron currents caused depletion of the caesium from the PG.

Inhomogeneous distribution of the electron currents caused by the plasma drift could partly been diminished by internal rods.

The dynamics of the currents during the short beam extraction phase shows that for realistic results a continuous beam extraction is necessary.

Best results have been achieved by high caesium density, but stabilization of the Caesium layer on the plasma grid during the pulses, possibly by accelerated Caesium ions, is the main issue of future developments at ELISE.