DE LA RECHERCHE À L'INDUSTRIE

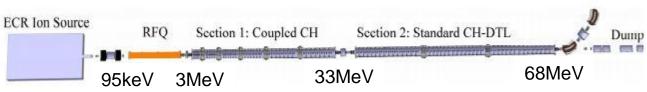
COMMISSIONING OF THE ECR ION SOURCE OF THE HIGH INTENSITY PROTON INJECTOR OF THE FACILITY FOR ANTI PROTON AND ION RESEARCH (FAIR) AT CEA-SACLAY

TUSKE Olivier (olivier.tuske@cea.fr)

www.cea.fr

17th International Conference on Ion Sources

- Introduction of the FAIR project
 - Project requirements
 - Beam simulations and Ion Source design
 - Planned commissioning steps
- Diagnostics for Beam characterization at Saclay
 - ACCT
 - Wien Filter and Doppler Shift measurements
 - Allison Scanner
- Some very preliminary Results
- Conclusions

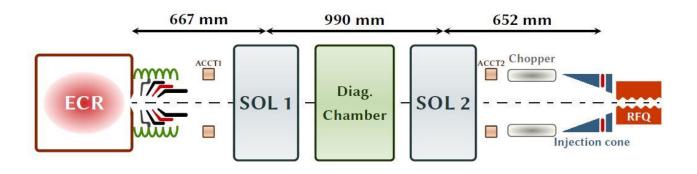

DE LA RECHERCHE À L'INDUSTRIE

\mathbf{C}	27
\smile	

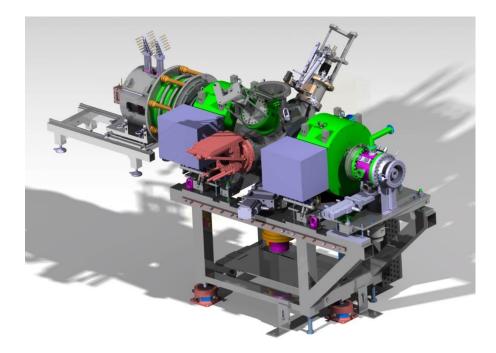
The

FAIR AT GSI

Linear Accelerator UNIAC Linear Accelerator UNIAC Linear Accelerator UNIAC Linear Accelerator UNIAC Linear Accelerator UNIAC Resea Antiproton Resea Resea REQ Antiproton Fracility Antiproton Fracility Antiproton Fracility Antiproton Fracility Antiproton Fracility Antiproton Fracility Antiproton Fracility Antiproton Fracility Antiproton Fracelerator UNIAC Antiproton Fracelerator Fracel	in Europe GmbH	
P-UNAC Ring Accelerator VINUAC Sista Innear Accelerator Sista Rare Isotope Resea Production Target REQ Antiproton Sista Innear Antiproton Network Sista Innear Sista Innear REQ Innear Sista Innear Innear Inne Innear<		
$\frac{RFQ}{DTL} = 3 \frac{MeV, 90 \text{ m}}{3 \frac{MeV, 90 \text{ m}}{DTL}}$ $\frac{RFQ}{DTL} = 3 \frac{CCH+ 3 CH}{3 25.224}$ $Current [mA] = 70 (design),$ $Emittance (\mu m] \leq 2.8$ $Mom. Spread [‰] \leq 1$ $RF Pulse [µs] = 70$ $Max Beam Pulse[µs] = 36$	SISTOD Facility for Antiproton and Ion Rare Isotope Research	Linear Accelerator
RF Pulse [µs] 70 Max Beam Pulse[µs] 36	RFQ3 MeV, 90 mA, $\varepsilon_{porm}=2 \mu m$ DTL3 CCH+ 3 CH-DTL, 70 MeVFrequency [MHz]325.224Current [mA]70 (design), ≥ 35 (operation)Emittance (μm] ≤ 2.8	
Storage Ring Image: Planned facility Repetition Rate [112] 4 100 metres CR Ring experiments Duty Factor [%] 0.1 Total Length [m] ~ 30	existing facility existing facility planned facility planned facility Planned facility Repetition Rate [Hz] 4 Duty Factor [%] 0.1	

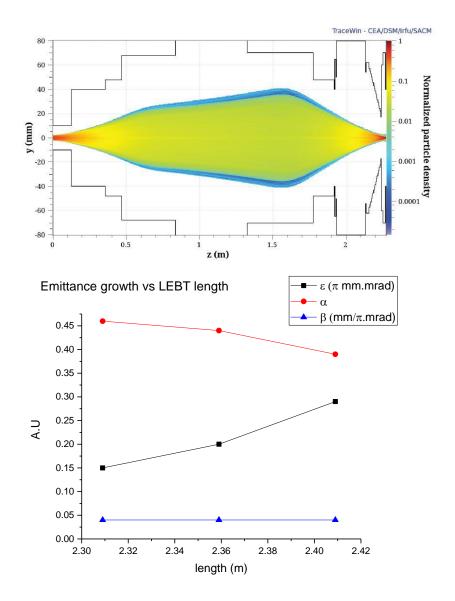

FAIR

Facility for Antiproton and Ion Research


DE LA RECHERCHE À L'INDUSTRI

Cea

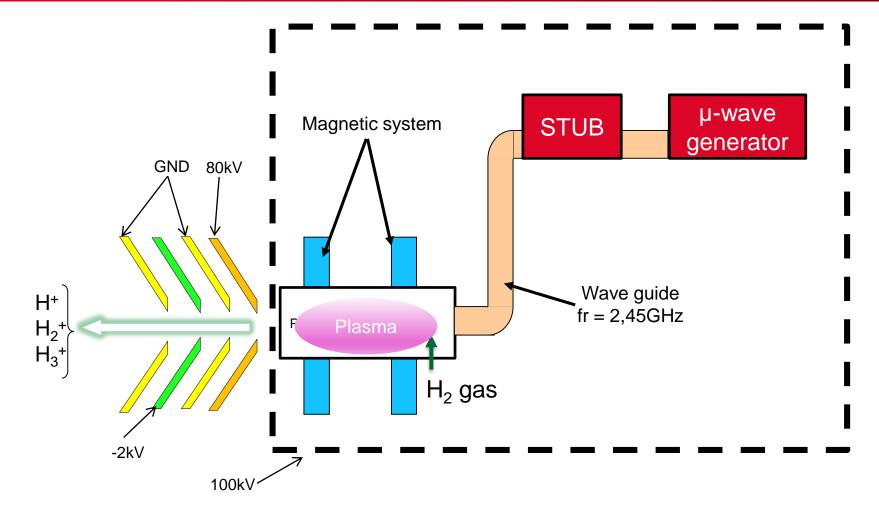
PLANNED P-LINAC AT GSI / INJECTOR AT SACLAY



Parameter	Value
Particule	H ⁺
Mode	Pulsed mode (frequency: 4Hz)
Beam Intensity	100 mA
Energy Spread	60 eV
Emittance	$\leq 0.33 \pi$ mm.mrad
Twiss Parameters	
	$0.27 \leqslant \alpha \leqslant 0.59$
	$0.037 \leqslant \beta \leqslant 0.046 \text{ mm}/\pi.\text{mrad}$

DE LA RECHERCHE À L'INDUSTR

BEAM SIMULATION



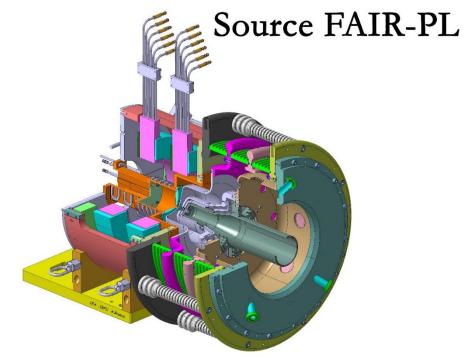
Early days Beam Simulations :

- The beam dynamics simulations have been performed with TraceWin,
- the Space Charge Compensation degree is considered constant in all the beam line SCC value has been set to 80%.

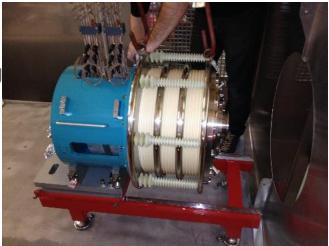
the emittance value is reduced as the LEBT is shorter

ECR ION SOURCE FOR HIGH INTENSITY PROTON PRODUCTION

Electron in a magnetic flield $\omega(\text{electron}) = e \text{ B / m} = \omega(\mu\text{-wave}) \rightarrow \text{Brez} = 87,5 \text{ mT} @ 2,45\text{GHz}$

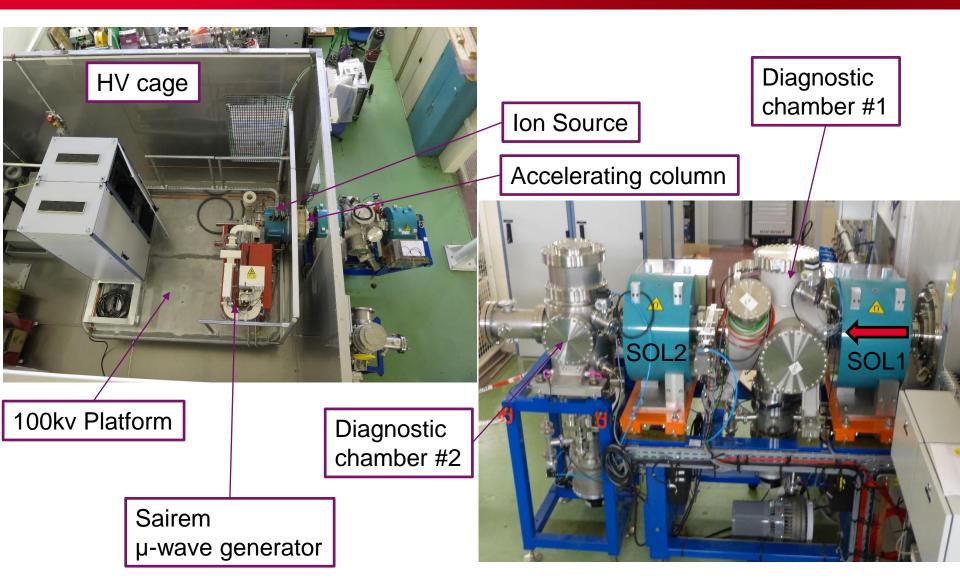

CEA | October 2017 | PAGE 6

DE LA RECHERCHE À L'INDUSTRI


ION SOURCE FAIR

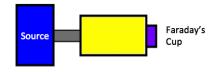
Based on the SILHI source design

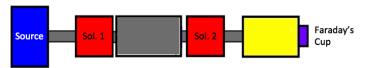
- Pentode electrode extraction system
- 2 magnetic Coils
- Plasma Chamber : 100mm long, Ø90mm
- Ø9mm extraction hole
- Mass flow injection system
- SAIREM Pulsed Magnetron 2,45GHz, optical fiber timing control
- SAIREM 4 stub μ-wave Tunning System

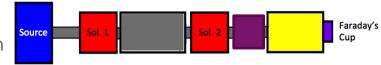


CEA | October 2017 | PAGE 7

07


INJECTOR @ SACLAY



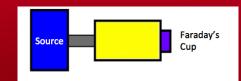

COMMISSIONING STEPS FOR THE IONS SOURCE AND LEBT

Commissioning in 3 steps

- # 1 : Installation and commissioning of the source :
- Measure of the source total output current of the source with the Faraday cup and ACCT
- Ions species fraction measurement with Wien Filter.
- Emittance measurement at the exit of the source with Allison Scanner
- # 2 : Installation of the LEBT and diag BOX 2:
- Current and transmission measurements in the LEBT with the Faraday cup and ACCT as function of the solenoid setting.
- Twiss parameters measurement at the RFQ entrance as function of the solenoid setting and the iris aperture.
- # 3 : Installation of the iris and the LEBT chopper :
- Installation of the GSI diagnostics : IRIS, Beam Profiler
- Test of the chopper.
- lons species fraction measurement at the RFQ entrance.
- Twiss parameters measurement at the RFQ entrance as function of the solenoid setting and the iris aperture.
- Effect of the chopper rise time on the space charge compensation

Part II

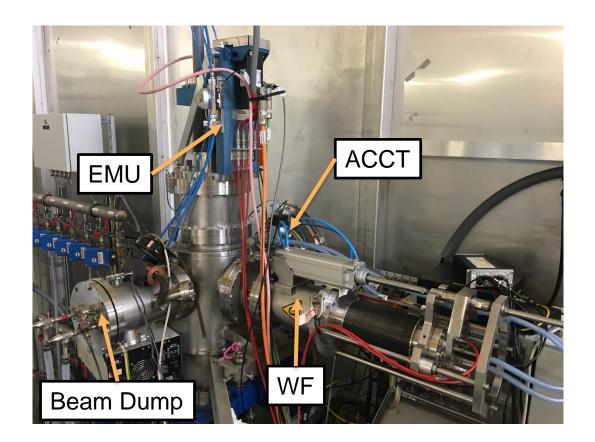
DIAGNOSTICS


ACCT : CURRENT MEASUREMENT

FDW : WIEN FILTER, VELOCITY FILTER

EMU : EMITTANCE MEASUREMENT UNIT

DIAGNOSTICS FOR PRELIMINARY RESULTS IN PHASE #1 WITH APERTURE HOLE Ø6MM



Beam characteristic at source exit

- Total Current
- Proportion measurement
- Emittance value

Beam Parameters to adjust

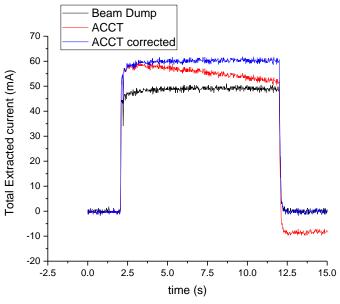
- Source Magnetic field
- H₂ Gas flux injection
- Microwave power & stub tuning
- Pulse length and repetition rate

DIAGNOSTIC #1/3 : BERGOZ CURRENT TRANSFORMER

Source Faraday's Cup

Localization

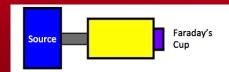
- One is installed after the Accelerating Column
- Second one will be after 2nd Solenoid
- Specific Magnetic shielding


First Test on SILHI LEBT (IPHI Accelerator)

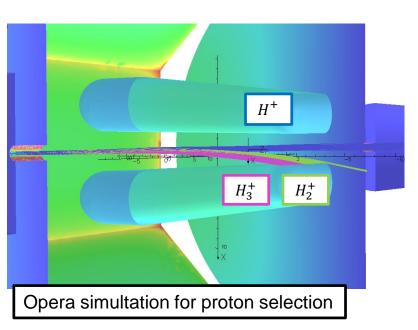
ACCT was tested on the SILHI LEBT,
 We removed the iron shielding of solenoid to increase fringe field

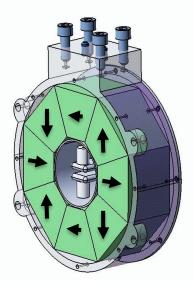
Voltage drop software-corrected

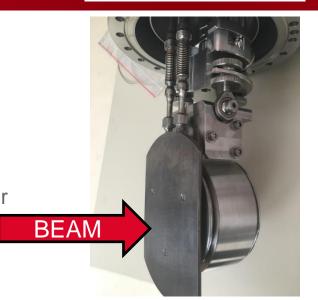
→



CEA | October 2017 | PAGE 12

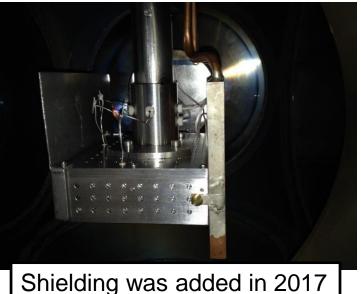


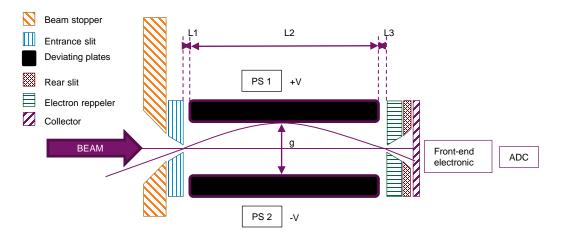

DIAGNOSTIC #2/3 : PROPORTION MEASUREMENTS

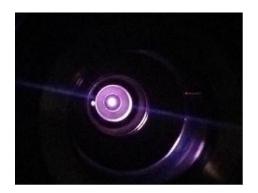

Wien Filter : velocity filter

- $\overrightarrow{Ex} \perp \overrightarrow{By}$
- \overrightarrow{B} : 8 magnets in Halbach configuration
- \overrightarrow{E} : Electric deviation with biased parallel plates
- Aperture hole Ø200µm in the water cooled W-Cu Beam stopper
- Front end acquisition with low noise and variable gain
- Time-resolved acquisition under Labview Real Time

DIAGNOSTIC #3/3 : EMITTANCE MEASUREMENT UNIT



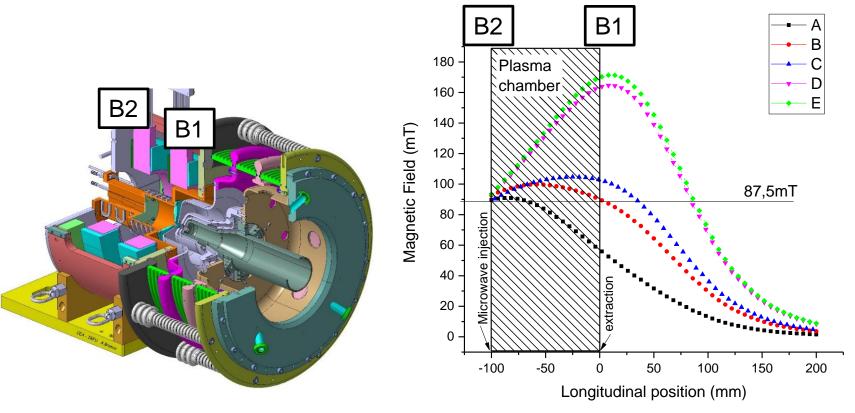

Allison Scanner



- Collaboration with IPHC Strasbourg
- Copper beam-stopper for 400W CW equivalent beam
- Entrance slit 110µm
- Electric deviation with 2 biased parallel plates
- Front end acquisition with low noise and variable gain
- Not time-resolved, acquisition time fixed at 2ms
- Labview FPGA control system

Part III Preliminary results, a short history

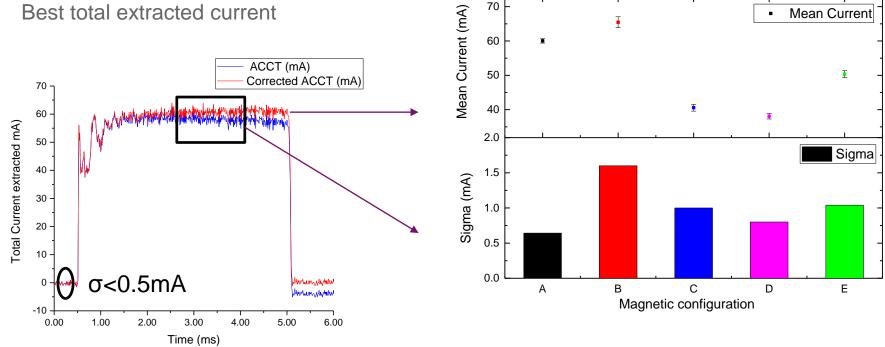
FIRST PLASMA NOV 2015 FIRST BEAM 2016 ONLY ACCT WAS AVAILABLE


CONTROL SYSTEM WAS NOT READY LOCAL C&C WAS DEVELOPED IN LABVIEW

2016 : EMU DELIVERED AND INSTALLED BUT NEED TO BE SHIELDED, AND REPAIRED → 2017

2017 : WIEN FILTER AVAILABLE, STILL UNDER DEBBUGGING

MAGNETIC CONFIGURATIONS


Magnetic Configuration	B1 (A)	B2 (A)
A : Single coil magnetic configuration	0	113
B : Intermediate	50	91
C : SILHI source type of configuration	76	74
D : ALISES ion source type	170	38
E : ALISES ion source type	180	30

1/3 : ACCT RESULTS

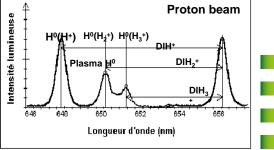
What defines a "GOOD" source tuning point ?

- Repeatable pulse shape in time
- Plateau reached before 2 ms
- Low ripple amplitude on the plateau
- Best total extracted current

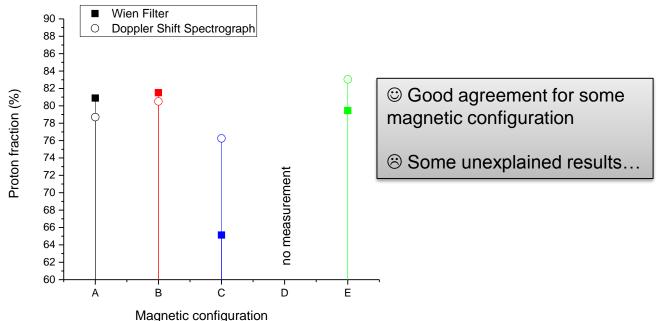
© Ripple amplitude is a good parameter to check the quality of the source tuning ¹ For some magnetic configurations, the mean extracted current is low for a good tuning!

С

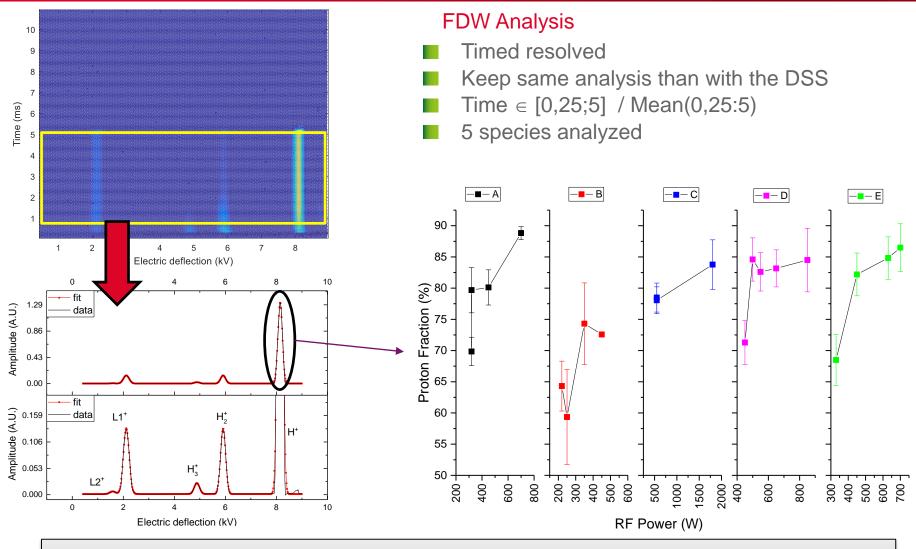
D


Е

В


А

2/3 : WIEN FILTER COMPARISON WITH DOPPLER SHIFT MEASUREMENT

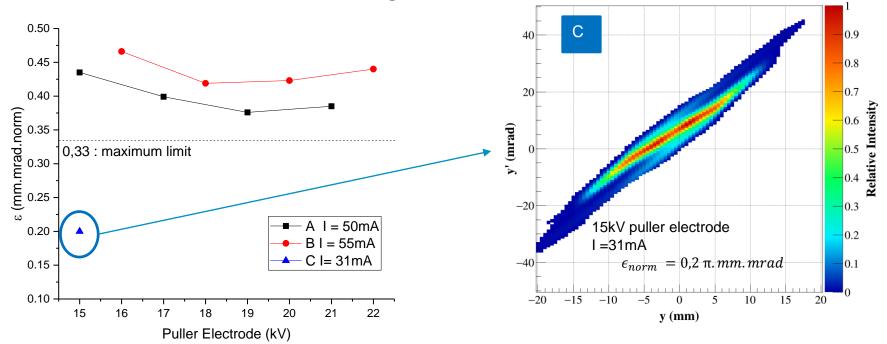


Doppler Shift Spectrograph sensible to the H α line of Hydrogen Shift due to velocity and angle of measurement θ =21° Light is collected and transported by a optical fiber to spectrometer Cooled camera to lower noise Same Source tuning for DDS and WF

DE LA RECHERCHE À L'INDUSTRIE

2/3 : WIEN FILTER PROTON FRACTION

© Very high values of proton fraction 82-85%


☺ Need more data to well understand the differences between results

DE LA RECHERCHE À L'INDUSTRI

3/3 : EMITTANCE MEASUREMENT

EMU Analysis at source exit

- Time \in [2; 5] ms / Mean(2: 5)
- Background signal correction
- Series with Puller electrode bias voltage

Over the strong focusing magnetic configuration

- Emittance values are really too high !
- ➔ Accelerating column adapted for 120mA
- → should be better with aperture Ø9mm

CONCLUSIONS

ION source

- The ion source is operational since 2016, with a local C&C which is not an "industrial" but it does the work for now
- The GSI 100kV high voltage and coil power supplies arrived in mid September 2017
- Beam qualification just started : presented results were done in early September 2017
- Aperture hole from Ø6 to Ø9mm will soon be changed

Diagnostics

- ACCT, FDW and EMU have just been installed and used all together
- Up to now only CEA staff can use them
- Analyze of data are "not online" and not "user friendly" yet !
- Proton fraction are around 82-85% but not for all magnetic configurations
- Emittance value are above limit mainly due to low extracted current

Schedule

- Commissionning PHASE #1 with GSI member will start probably end of the year with nominal source parameter
- PHASE #2 will start early 2018
- LEBT chopper will be ready around mid 2018

Thank you for your attention

17th International Conference on Ion Sources