

New challenges in ion beam extraction modelling

Taneli Kalvas

Department of Physics, University of Jyväskylä

17.10.2017, 17th International Conference on Ion Sources, Geneva

Outline

- Introduction to plasma extraction codes
- Previous application of the negative ion extraction model
- CERN Linac4 H⁻ simulations
- Breaking the extraction model
- Possible modelling solutions
- Similar problems with ECRIS modelling

Positive ion plasma extraction model

S. A. Self, Phys. Fluids 6, 1762 (1963). J. H. Whealton, Rev. Sci. Instrum. 48, 829 (1977).

Negative ion extraction from plasma volume

- Plasma at positive potential
- Extraction potential is positive
- Plasma electrode at 0 V

Negative ion extraction from plasma volume

- Plasma at positive potential
- Extraction potential is positive
- Plasma electrode at 0 V
- Species: H[−], H⁺, e[−]

Negative ion extraction from plasma volume

- Plasma at positive potential
- Extraction potential is positive
- Plasma electrode at 0 V
- Species: H[−], H⁺, e[−]

 $ho_e/
ho_{H-}$ <<1

Plasma only slightly positive near the extraction

Saddle-shaped potential

Modelling negative ion extraction from plasma volume

Approximation: $\phi = 0$ V near the extraction:

Very simplified but allows systematics to be done due to fast computation (\sim 1 h for 10⁷ node 3D problem), which is not possible by PIC methods.

Normalized (x,x') rms emittance (mm mrad)

Application of the model

Application of the model

Measured and simulated (x,x') phase space patterns for 40 μA extracted H^- beam with 5 kV puller voltage

-65 kV -58.8 kV

10-

-20

Ê ×-10

Application of the model

T. Kalvas, R. F. Welton, O. Tarvainen, B. X. Han and M. P. Stockli, Rev. Sci. Instrum. 83, 02A705 (2012).

0 V

50

-48 kV

0 V

CERN Linac4 / DESY

DESY source at 45 kV producing ~23 mA H⁻ and >1 A of electrons

O. Midttun, Rev. Sci. Instrum 83, 02B710 (2012)

CERN Linac4 / DESY

Linac4 IS01

Volume production, electron dumping at lower energy

O. Midttun, AIP Conf. Proc. 1515, 481 (2013)

Linac4 IS02

Cesiated source to increase H^- production and to reduce e^-/H^- ratio

D. Fink, AIP Conf. Proc. 1655, 030006 (2015)

Linac4 IS02

46 mA H⁻, e⁻/H⁻ ratio of ~1, full compensation in LEBT

IS03a, IS03b optimized the filter field, fixed the electron dump leakage and reduced the emittance growth in the extraction einzel lens.

UNIVERSITY OF JYVÄSKYLÄ

Surface production effect?

S. Mochalskyy, ICIS2013 and A. Revel et al., Nucl. Fusion 53, 073027 (2013)

Surface produced H^- in tracking codes?

Test with additional surface species:

• 40 mA total

400

200

0

-200

-400

All H⁻

-4

-2

x' (mrad)

UNIVERSITY OF JYVÄSKYLÄ

• 20 mA surface produced

E rms = 48.74 mm mrad

0

x (mm)

2

80 mA electrons

CERN Linac4 IS03c: phase space data backtracked to z=3 mm

UNIVERSITY OF JYVÄSKYLÄ

Collaboration with Keio University:

1. IBSimu calculation with plasma and beam \rightarrow Potential at z=3 mm, boundary for PIC calculation.

Coupled PIC extraction + tracking code

-190.5

0.04

0.02 ·

Ê 0 -

UNIVERSITY OF JYVÄSKYLÄ

Collaboration with Keio University:

1. IBSimu calculation with plasma and beam \rightarrow Potential at z=3 mm, boundary for PIC calculation.

Coupled PIC extraction + tracking code

UNIVERSITY OF JYVÄSKYLÄ

Collaboration with Keio University:

1. IBSimu calculation with plasma and beam \rightarrow Potential at z=3 mm, boundary for PIC calculation.

2. KEIO-BFX PIC calculation using the potential map.

3. Potential and particle data exported at z=1 mm.

4. IBSimu calculation using the data from KEIO-BFX

Case shown here: $\sim 20 \text{ mA}, \text{ e}^-/\text{H}^- \text{ ratio } \sim 20$

Poster We 17 S. Nishioka, "Integrated modeling of the beam formation and extraction in the Linac4 hydrogen negative ion source"

Uncesiated IS03c: 20 mA H^- , e^-/H^- ratio 15–20

Effect of ion temperature

J. H. Whealton, J. Appl. Phys 64, 6210 1988 and Rev. Sci. Instrum. 69, 1103 (1998):

- Much more complicated than current negative extraction model
- Still simpler and especially faster than PIC

Use of classic exponential model for ECR plasma extraction: JYFL 14.1 GHz

Argon 8+:

Contributions to emittance:

- 1. Ion temperature
- 2. Magnetic field divergence
- 3. Extraction aberrations

Higurashi, et al., Proceedings of ECRIS-2014, Nizhny Novgorod, Russia

Electron loss patterns for JYFL 14.1 GHz ECRIS

Acknowledgements

Jacques Lettry Alessandra Lombardi Daniel Fink Stefano Mattei Shu Nishioka Daniel Noll Matthew Garland Jean-Baptiste Lallement

