The CANREB Project for Charge State Breeding at TRIUMF

F. Ames\(^1\), R. Baartman\(^1\), B. Barquest\(^1\), C. Barquest\(^1\), M. Blessenohl\(^2\), J. Crespo López-Urrutia\(^2\), J. Dilling\(^1\), S. Dobrodey\(^3\), L. Graham\(^1\), R. Kanungo\(^3\), M. Marchetto\(^1\), M. R. Pearson\(^1\), S. Saminathan\(^1\)

\(^1\)TRIUMF, Vancouver, BC Canada
\(^2\)Max Plank Institute for Nuclear Physics, Heidelberg, Germany
\(^3\)Saint Mary’s University, Halifax, NS, Canada

CANREB (CANadian Rare isotope facility with Electron Beam ion source)

- high resolution mass separator
- \(M/\Delta M = 20,000\) for beams from ARIEL
- charge state breeder for radioactive ion beams from ISAC and ARIEL,
 - \(A/q = 5 - 7, E = 10 - 14\) q\(^*\)kev
 - RFQ cooler/buncher
 - EBIS charge state breeder
 - Nier spectrometer for highly charged ions
 - pulsed operation at 100 Hz

Charge state breeding

- RFQ buncher

- gas filled radio frequency quadrupole (3-36 MHz, 1 kV\(_p\))
- capturing of singly charged ions at 60 keV
- accumulating section
- release as ion bunches
- pulsed drift tube for energy matching to accelerator

- EBIS parameters
 - electron beam: \(I_e \sim 0.5\) A, \(E_e \sim 0.5 - 8\) keV up to 20 000 A/cm\(^2\)
 - magnet but T
 - beam acceptance:
 - singly charged ions
 - \(<1\)\(^0\) ions per bunch
 - \(E = 10 - 14\) keV
 - transversal emittance 5 \(\mu\)m
 - bunch length 1 \(\mu\)s
- highly charged ion beam properties
 - \(E = 10 - 14\) keV \(Q\)
 - 6\(^0\) \(< 100\) eV \(Q\)
 - transversal emittance \(< 20\) \(\mu\)m

High resolution mass separator

- two 90\(^\circ\) dipoles
- and electrostatic multipole (44 poles)

- incoming beam:
 - mass range up to \(A = 238\)
 - beam energy 60 keV
 - can be floated up to -60 kV to increase energy
 - resolving power 20000 (energy spread < 1 eV, 3 \(\mu\)m emittance)
 - 10000 (6 \(\mu\)m emittance)

- other design requirements:
 - stable operation over extended time (weeks)
 - fast set-up
 - low intensity beam diagnostics

- status:
 - magnets tested and received
 - multipole manufacturing in progress

Outlook

- complete installation at TRIUMF in August 2018
- Commissioning with stable ion beam from test ion source
- First charge breeding test with radioactive ions from ISAC 2019