SPECTRAL MODELLING OF NEUTRAL BEAM FOR DOPPLER SHIFT SPECTROSCOPY DIAGNOSTICS OF INTF

Arnab Jyoti Dekaa,b, Bharathi Pa, Dass Sudhir Kumara, Mainak Bandyopadhyaya,b, Arun Chakrabortya

aInstitute for Plasma Research, Gandhinagar, Gujarat, 382428, India. bHomi Bhabha National Institute, Mumbai 400094, India. cITER-India, Institute for Plasma Research Gandhinagar, Gujarat, 382428, India.

Email: arnab.deka@ipr.res.in

Objective

- The Doppler shift spectroscopy diagnostics set up is envisaged for measurement of beam divergence before uniformity and stripping losses for 100 keV DNB of ITER.
- Establish the diagnostics set up by beam spectral modelling of the H beam (To be tested on Indian Neutral Beam Test Facility INTF)
- Chose diagnostics set up parameters for obtaining good signal to noise ratio and error in divergence measurements as < 10%.
- Modelling of Doppler Shifted spectrum for all operational conditions.

\[
I(\lambda) = \frac{1}{\lambda^2 \cdot \lambda_{\text{beam}}} \cdot \exp \left(\frac{-(\lambda - \lambda_0)^2}{\lambda_{\text{beam}}^2} \right) \cdot \frac{1}{4\pi \cdot R_{\text{eff}}} \cdot Q_{\text{beam}} \cdot \cos \theta \cdot \frac{\Delta \lambda}{\lambda}.
\]

Beam Emission Spectrum Modelling

- Beam Geometry
- Beam Parameters
- Ion source parameters

Determine Estimated value Calibration

\[
\Delta \lambda = \lambda_0 \cdot \cos \theta \quad \text{- (2)}
\]

Spectral line emitted from a particle moving relative to an observer appears shifted in wavelength due to Doppler effect.

Indian Neutral Beam Test Facility - INTF

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Energy</td>
<td>100 KV (ns)</td>
</tr>
<tr>
<td>Aperture Arrangement</td>
<td>4 x 4 Group</td>
</tr>
<tr>
<td>Pulse Height</td>
<td>60 A</td>
</tr>
<tr>
<td>Pulse Length</td>
<td>500 ns</td>
</tr>
<tr>
<td>Current Density</td>
<td>100 A/m2</td>
</tr>
<tr>
<td>Beam Parameters</td>
<td></td>
</tr>
<tr>
<td>Beamlet Path length</td>
<td>30 m</td>
</tr>
<tr>
<td>LOS path length</td>
<td>1.25 m</td>
</tr>
<tr>
<td>Typical Beam path length (bottom)</td>
<td>3.2 m</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimated Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaturalBroadening (\Delta \lambda_1)</td>
<td>0.0313 nm</td>
<td>0.005 nm</td>
</tr>
<tr>
<td>Instrument Broadening (\Delta \lambda_2)</td>
<td>0.084 nm</td>
<td>0.10% \Delta \lambda_1</td>
</tr>
<tr>
<td>Beam Focusing (\Delta \lambda_3)</td>
<td>0.324 nm</td>
<td>20% \Delta \lambda_1</td>
</tr>
<tr>
<td>Voltage Ripple (\Delta \lambda_{\text{ripple}})</td>
<td>0.002 nm</td>
<td>1% \Delta \lambda_{\text{ripple}}</td>
</tr>
</tbody>
</table>

Table 3

Determination of Calibration Factor of DSS Diagnostic set up

- Parameters :
 - Acceleration Voltage : 15 KV
 - Beam Current : 0.58 A

Divergence error less than 10% for LOS angle 80-100 deg. Beam current 0.1 A

Derivation of reaction rate (Vacuum beam density)

\[
\frac{\partial n}{\partial t} + \nabla \cdot (n \cdot v) = -\nabla \cdot \left(\frac{n \cdot \chi}{\rho} \right) - \nabla \cdot \left(\frac{n \cdot \chi}{\rho \cdot \Gamma} \right) + \frac{\partial}{\partial t} \left(\frac{n \cdot \chi}{\rho \cdot \Gamma} \right)
\]

Rate Equations to calculate the beam fractions along the beamline

Gas Density Profile computed using MCGF code

Modelled Doppler Shifted Spectrum for 30 A - 100 keV H- Beam considering the parameters in Table 2. The SWR is \(10^{-4}\). Target emissions (emissions from dissociative excitation of background gas) are also shown in this figure.

Future Work

- Model the stripping loss of the beam
- Model the spectra for a non-homogeneous beam
- Hardware procurement for testing and installation

Conclusion

- The Doppler Shift Spectrum based on optical emission spectroscopy for neutral beam (H0) of 100 keV energy is modelled and the parameters for the diagnostic setup have been established.
- The modelling shows that a relatively high signal to noise ratio (>100) even for low beam current (1A) has been achieved for the proposed diagnostic setup.
- The beam divergence measurement can be measured with error < 10% considering the parameters in Table 1.

Future Work

- Model the stripping loss of the beam
- Model the spectra for a non-homogeneous beam
- Hardware procurement for testing and installation