aser path.

Hydrogen atom

 $H^- + hv \rightarrow H + e^-$

Lock-in amplifier

detects detached

electrons as

photodetachment

current corresponding

laser modulation

frequency.

Diagnostics of Ta Deposited Plasma Electrode for Negative Hydrogen Ion Production with DC Laser Photodetachment Method

S. Masaki^{1,a)}, M. Sasao² and M. Wada¹

¹Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan ²Office for Promotion of Research and Development, Doshisha University, Kamigyo, Kyoto 602-8580, Japan a)duq0329@mail4.doshisha.ac.jp

Principle

Negative drogen ion

Abstract

Negative hydrogen ion (H-) density near an extractor depends upon materials which cover plasma electrode (PE) surface. Tungsten and tantalum were compared as adsorbate on a PE using filaments evaporation made of these elements in a H2 discharge plasma. The difference of the filament material and PE bias voltage showed different characteristics of the intensity of extraction current and that of H- ion current. For the tantalum filament operation, photodetachment signal showed a similar property of extraction current against the bias voltage while the tungsten filament operation indicated a plateau near the anode potential.

Experimental apparatus

Conclusion

- Tungsten operation made the bias potential to draw maximum $I_{\rm H}$ higher than the bias for Ta filament operation. For the similar $I_{\rm H}$, $I_{\rm ext}$ of the Ta filament was about 74 % of I_{ext} for the W filament at the anode potential.
- Photodetachment current signal onto the extractor showed a V_b dependence similar to I_{ext} , when Ta was the filament material. When the bias potential to the PE was close to the anode potential, W filament formed the plasma producing constant photodetachment current; *i.e.* $I_{\text{photo}}/I_{\text{ext}}$ took a maximum at $V_b =$ 1.2 V before the signal start to decrease.