Resonant Ionization of Atomic Tellurium with Ti:Sapphire Lasers

Y. Liu1, T. Kieck2, D. W. Stracener1, K. D. A. Wendt2

1Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
2Institut für Physik, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany

MOTIVATION

- Resonance ionization laser ion sources have become essential tools for the production of isobarically pure radioactive ion beams for nuclear research [1]
- Efficient resonant ionization of beams of atomic tellurium using a combination of Ti:Sapphire and dye lasers has been recently reported [2]. However, the ionization schemes are not applicable to laser ion sources equipped only with Ti:Sapphire lasers
- This study investigates potential resonant ionization schemes of tellurium using only Ti:Sapphire lasers
- The resonant ionization laser ion source (RILIS) at the Oak Ridge National Laboratory (ORNL) is equipped with three tunable Ti:Sapphire lasers and is well suited for this study

EXPERIMENTAL

- Experiment conducted at the Injector for Radioactive Ion Species (IRIS2)
- IRIS2: an ISOL production station for former Holifield Radioactive Ion Beam Facility (HRIBF). The major components for this study include:
 1. Target and ion source (TIS) assembly located on a 60-kV platform
 2. Switching magnet
 3. Mass-separator magnets with a nominal resolving power of 1000 : 1
 4. Faraday cups (FC) to measure the ion beam currents
 5. Vacuum window for laser beam injection

CONCLUSION

- Three-step resonant ionization of Te with all Ti:Sapphire lasers is demonstrated
- Analysis of the photoionization spectra is in progress to identify potentially efficient ionization schemes
- Next step: evaluate the efficiency of selected candidate schemes

Acknowledgements

This research was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics. This research used resources of the Holifield Radioactive Ion Beam Facility of Oak Ridge National Laboratory, which was a DOE Office of Science User Facility