
H- enhancement 
 
• D=25mm; 
• d=12mm; 
• L=56mm; 
• 𝑝𝐻𝐻𝐻𝐻 ≈ 1.1𝑃𝑃  
• 𝑝𝑐𝑐𝑎𝑎𝑎𝑎𝑎 ≈ 0.15𝑃𝑃 

 
• Maxwellian velocity distribution           Radial velocity with Gaussian profile 

 
• Total Impact Probability          P = Pα − Pβ        𝑃𝛼 = 1
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• Hypothesized hydrogen density at the channel exit nH=1015 m-3 

 
 

• Conversion 𝐻 → 𝐻− through impact 
 on caesiated surface → 12% 

 
 

• Expected current measured  
 in the order of 𝜇𝜇 

 
 

Magnetic Confinement 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Numerical simulations 
 
o Monte Carlo gas model [6] with 2D axial symmetric geometry 

 
• Electron density and temperature profiles of a SPT100 as input (Xenon as fuel) 

 
• Results with Hydrogen 

 
• Peak of H density and TH 1cm from the exit plane 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
o self-consistent 
 Particle-In-Cell/Monte Carlo Collision(PIC-MCC) [7] 

 
• 3D in cylindrical coordinates in angular sector 
 of the channel 
• exit plane where the cathode condition (φ=0) 
 is forced to occur 
• Initialization of all the quantities remaining fixed during the PIC cycles 
• Injection, scatter, field solve, push, plasma-boundary interaction and Monte Carlo 

collision modules iteratively solved 
• Time-resolved and steady state diagnostics computed in a dedicated module. 

Hall Thruster 
 
Geometry: 
• Gas injection system 
• Dielectric annular chamber 
• Magnetic circuit for a radial magnetic field at the channel exit 
• Anode at the channel bottom 
• External cathode 

 
 

Working principle: 
• External cathode emits electrons. Most of them go to the anode 
• Radial magnetic field plus electrical discharge           electrons trapped in a cyclotron motion in 

the azimuthal direction 
• Trapped electrons      volumetric zone of gas ionization    virtual cathode        ions 

accelerated and not influenced by the magnetic field(larger Larmor radius) 
• Accelerated ions plus electrons         neutralized thrust 

 
The atoms ejected by the device could be guided towards a caesiated sample to enhance the 
negative ion generation.  
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Introduction 
 
The Neutral Beam Injector (NBI) system is one of the schemes of plasma heating for fusion 
application. For the  reactor prototype DEMO, it requires the improvement of the efficiency of all 
processes entering in the production of the beam, among which the negative ion generation in 
the ion source. 
 
Issues of present negative ion sources (RF and filament): 
• Difficulty in keeping the negative ion current constant and reproducible 
• Spatial inhomogeneous current density 
• Elevated fraction of co-extracted electrons [1] 
• High power required to sustain the plasma in the source [2] 
• Fast electrons in the plasma source limit the generation of negative ions 
 
Purpose of this contribution is to present the research activity aimed to improve that efficiency 
by studying alternative sources 
 
Objective: maximize the negative Hydrogen ion generation by surface conversion of neutral 
atoms on caesiated surfaces [3]-[4]  . Hall Thrusters could be used as Hydrogen(𝐻2) 
dissociator.  

Conclusions 
 
Experimental campaigns will begin in mid-November. The first phase consists of the plasma ignition: plasma characteristics will be  
measured through a Langmuir probe. In the second phase, the caesiated sample will be installed on the manipulator and first 
current measurements will be taken. In the third phase, we will optimize the system. 
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Hall thruster cross-section schematic [5] 
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Case study: ATHENIS 
 

• dout= 25 mm 
• din=12 mm 
• L=56 mm 
• Voltage anode-cathode Vd=160 V 
• nominal discharge current  Id=0.75 A  
• discharge power of Pd=120 W 
• Hydrogen mass flow rate ṁ =0.15 mg/s  
• maximum magnetic field Br,max=100 G 

 
 
 
 
 
 
 
 
 
 
 
 

• Length of the channel do not follow the Melikov-Morozov[8] rule for scaling 
 

• Poor thrust efficiency 
 

• Plasma ignition with such low hydrogen mass flow still possible 
 

• Reaction rates of the dissociative channels one order of magnitude lower than ionization 
 

• 2 zones of electron confinement as expected 

Electric Potential 3D map 
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Ideal radial magnetic field and axial 
electric field along the channel[5] 

Real radial magnetic profile for ATHENIS Magnetic field contour plot for ATHENIS 

Electron density 3D map 

Reaction rate H2 ionization                                                     Reaction rate H2 dissociative ionization                                  Reaction rate H2 dissociation 

𝜆 = 𝐾𝐾
2𝜎2𝑝𝑐𝑐

            𝜎2 = 𝜋𝑑𝐻2
2 [9]      𝜆𝑙𝑙𝑙 = 1.54𝑚 

• Double peek of the magnetic 
profile instead of a single one 
 

• Thrust efficiency decreases but 
the real aim is the electron 
confinement 
 

• Rings of permanent magnets 
allows immediate flexibility in 
terms of geometry adaptation 

ATHENIS layout 
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