

Université Mohammed V Faculté des Sciences Rabat Mohamed V University Faculty of Sciences Rabat

Search for resonant W± Z → lvl'l' Production in Proton-Proton Collisions at √ s = 13 TeV with the ATLAS Detector

<u>S. DAHBI</u>, Y. TAYALATI (MOHAMED V UNIVERSITY RABAT) J. MANJARRES (TECHNISCHE UNIVERSITAET DRESDEN), S. HASSANI (CEA-SACLAY)

- 1. Introduction .
- 2. Object selection.
- 3. Event Selection .
- 4. Data and MC samples .
- 5. Trigger efficiency .
- 6. ZZ veto optimisation .
- 7. VBS, qq category definitions .
- 8. HVT VBS Signal optimization.
- 9. Conclusion .

Introduction

- WZ production is sensitive to various extensions of the Standard Model wich predicting heavier versions of the W and Z bosons, the W' and Z'.
- The aim of this study is fully leptonic analysis of the WZ decay (e,µ) in inclusive and VBS production modes :
 - ✓ Estimate the gain added by using other triggers, than the single lepton trigger used in this analysis, and improve the trigger efficiency for data15.
 - ✓ Optimize the Veto of four-lepton events.
 - ✓ Estimate the VBS signal efficiency and compare it with the inclusive results.
 - ✓ optimize the Significance for HVT VBS Signal :

Significance =
$$\frac{S}{\sqrt{S+B}}$$

Object Selection

ET Miss

- Use METMaker tool .
- Original MET container MET_Core_AntiKt4EMTopo.
- Add electrons, muons after corrections and e-µ and ee corrections
- Add corrected jets (overlap handle by the tool)
- MET rebuilt adding the "soft term" coming from tracks

Overlap removal

- Use overlap removal tool with the preselected leptons.
- e-e Electrons (after electron ID cuts) sharing the same ID-track, keep the electron with highest cluster ET
- e-µ Remove CaloTagged muons which share the same InnerDetector track as the electron
- e-jets Removes jets overlaping with electrons with $\Delta R < 0.2$

Event Selection

- Event cleaning: Reject LAr, Tile and SCT corrupted events and incomplete events.
- Primary vertex: Events are required to have a primary vertex with at least two associated tracks.
- Trigger : Single triggers.
- N leptons : Exactly three leptons passing the Z lepton selection.
- Z Z veto : Less than 4 leptons with <u>pT > 20 GeV</u> (to be optimized) .
- Z leptons : Two same flavor oppositely charged leptons passing Z lepton selection.
- Z Mass window : $|M_{ll} M_z| < 20 \text{ GeV}$.
- W lepton : Likelihood Tight and Gradient isolation for Muons and electrons.
- Missing transverse Energy: ETmiss > 25 GeV

Data and MC samples Data and MC samples

Data:

- The data used in corresponds to an integrated luminosity of 36 fb-1 :
 - o data15_13TeV.periodAllYear_DetStatusv79repro20-01_DQDefects-00-02-02_PHYS_StandardGRL_All_Good_25ns.xml
 - o data16_13TeV.periodAllYear_DetStatus-v83pro20-10_DQDefects-00-02-04_PHYS_StandardGRL_All_Good_25ns.xml

Monte Carlo:

Signal	VBS (H5p, HVT) , qq (HVT MadGraphPythia8EvtGen_A14NNPDF23LO_HVT_Agv1_VcWZ_lvll)
WZ	PowhegPy8EG_CT10nloME_AZNLOCTEQ6L1_WZlvll Or (Sherpa_221_NNPDF30NNLO_IIIv and Sherpa_CT10_IIIvjj_EW6)
ZZ	Sherpa_CT10_ggIIII and ZZIIII_mII4
Z+jets	Sherpa_221_NNPDF30NNLO_Zee , Sherpa_221_NNPDF30NNLO_Zmumu , Sherpa_221_NNPDF30NNLO_Ztautau
Z+gamma	Sherpa_CT10_eegamma, Sherpa_CT10_mumugamma.
tZ	MadGraphPythiaEvtGen_P2012_tZ.
t T	PowhegPythiaEvtGen_P2012_ttbar, PowhegPythiaEvtGen_P2012_SingleTopSchan
VVV (V= W ; Z)	Sherpa_CT10 : WWZ_4l2v, WZZ_5l1v, ZZZ_6l0v, ZZZ_4l2v
t T̄V	MadGraphPythia8EvtGen_A14NNPDF23LO_ttZllonshell

Trigger efficiency

Single-Electron triggers	HLT_e60_lhmedium
(Nominale)	 HLT_e24_lhmedium_L1EM20VH
	 HLT_e24_lhmedium_L1EM18VH
	HLT_e120_lhloose
Single-Muon triggers	HLT_mu20_iloose_L1MU15
(Nominale)	• HLT_mu50
Di-Electron triggers	HLT_2e12_lhloose_L12EM10VH
Di-Muon triggers	• HLT_2mu10
	 HLT_mu18_mu8noL1
Tri-Electron triggers	HLT_e17_lhloose_2e9_lhloose
Tri-Muon triggers	• HLT_3mu6
	HLT_3mu6_msonly
	 HLT_mu18_2mu4noL1
Electron-Muon triggers	HLT_2e12_lhloose_mu10
	 HLT_e12_lhloose_2mu10
	 HLT_e7_medium_mu24
	 HLT_e17_lhloose_mu14
	 HLT_e24_medium_L1EM20VHI_mu8noL1
MET trigger	• HLT_xe60
	• HLT_xe70
	• HLT_xe80
	• HLT_xe100

• Trigger efficiency is defined as

$$\epsilon = \frac{n_+}{n}$$

n : number of events passing selection with out any trigger requirement.

 n_+ : number of events passing the selection .

 n_- : number of events failing the selection .

Trigger efficiency for HVT in electron channel

Trigger efficiency for HVT in muon channel

Adding trigges to Nominal triggers

- Less than 1% gain by adding MET triggers to Nominal triggers for Muons Channel
- About 1% gain by adding MET triggers to Nominal triggers for Electrons Channel

Trigger efficiency per Channel For WZ SM

- Calculate trigger efficiency using the SM sample:
 - Nominal triggers
 - Nominal+MET triggers
- Looked also at the lepton PT distribution
- There is no efficiency gain by adding MET triggers in the SM sample

Trigger_Efficiency vs WZ Lepton Pt (WZ SM)

WZ SM Efficiency							
Triggers	μμμ	еμμ	µee	eee			
Nominal+MET	99.4 %	99.8 %	100 %	100 %			
Nominal	99.4 %	99.8 %	100 %	100 %			
Gain %	0	0	0	0			

- Adding MET triggers to the nominal selection we see a gain in efficiency in the mmm channel (0.6 %)
- Single lepton trigger (Nominal triggers) is 100% efficient for electrons.

ZZ veto optimisation .

Decreasing the ZZ pt lepton cut veto from 20 GeV to 7 GeV, reduces the ZZ background by more than 25%. While the dominant background WZ SM is not affected by this cut.

VBS, qq category definitions .

VBS/VBF

- After selection the W and Z condidates.
 - ✓ VBS Category is defined :
 - ✓ Select first good Z and W boson selction
 - ✓ Only events with $N_{jet} \ge 2$ are considred for the analysis VBS.
 - ✓ Apply : Pt_j >20 GeV η_{jj} <4.5
 - ✓ Apply : m_{jj} >500 GeV and $\Delta \eta_{jj}$ >3.5
 - ✓ qq Category : (qq category is orthogonal to VBS) all the events that do not satisfy the VBF/VBS criteria above will fall in qq category.

HVT Signal : inclusive and qq comparison

HVT Mass [GeV]	N (Inclusive VBS + qq)	N(qq)	Ratio [%]
500	1400+03+-22.3	1380+-22.1	1.43
700	433+-7.55	426+-7.5	1.62
800	272+-3.99	268+-3.96	1.47
900	180+-2.3	177+-2.28	1.67
1000	118+-2.09	115+-2.07	2.54
1100	82.7	80.6+-1.32	2.53
1200	56+-0.684	54.9+-0.678	1.96
1300	37.6+-0.801	37+-0.795	1.59
1400	28.3+-0.339	27.7+-0.335	2.12
1500	19.7+-0.24	19.3+-0.238	2.3
1600	14.7+-0.177	14.3+-0.175	2.72
1700	11+-0.134	10.7+-0.133	2.72
1800	8.25+-0.0992	8.05+-0.0979	2.42
1900	6.23+-0.0751	6.08+-0.0741	2.41
2000	4.88+-0.076	4.76+-0.0752	2.46
2200	2.86+-0.0855	2.79+-0.0845	2.45
2400	1.69+-0.0289	1.65+-0.0286	2.37
2600	1.02+-0.0125	0.988+-0.0124	3.14
2800	0.579+-0.00747	0.563+-0.00737	2.76
3000	0.351+-0.00574	0.341+-0.00566	2.85
3500	0.0941+-0.00153	0.0918+-0.00152	2.44
4000	0.0283+-0.000451	0.0274+-0.000445	3.18
4500	0.00842+-0.000158	0.00822+-0.000156	2.37
5000	0.00391+-7.03e-05	0.00383+-6.96e-05	2.4
4/6/20	17		

- Compare the number of HVT signal events passing all the selection cuts in exclusive and qq categories
- Less than 3% efficiency loss is found compared to inclusive analysis
- It seems that the HVT samples are quite pure and contain only qq events

15

Effect on total Background and data : inclusive and qq comparison

✓ Small impact (less than 3%) is seen both for total MC background and in data

29/03/2017

Kinematic distributions

Inclusive VBS and qq Signal

Before signal optimization cut selection cuts :

- Cutflowselection after selection W and Z candidates.
- Good data/MC agreement in µee and eee channels.

Channel	μμμ	еμμ	μee	eee	Inclusive
Data	1353	1047	910	805	4115
Total MC	1231.35+-43.33	960.56+-29.45	885.64+-22.34	764.04+-21.8	3841.59+-60.99
WZ	777.81+-11.43	624.61+-10.31	617.55+-10.30	523.68+-9.49	2543.65+-20.79
Z+Jets	210+-41.5	103+-27.1	79.5+-19.3	68.7+-19.3	461+-56.6
ZZ	90+-0.98	76.33+-0.89	66.91+-0.85	60.00+-0.82	293.24+-1.77
VVV	2.84+-0.09	2.45+-0.07	2.36+-0.075	1.95+-0.07	9.60+-0.15
Z+g	2.01.+-0.97	40.78+-3.49	0.88+-0.42	33.48+-2.69	77.15+-4.54
top	66.6+-4.65	43.9+-3.77	55.1+-4.31	21.7+-2.47	187+-7.78
ttbarV	67.92+-0.46	57.65+-0.43	51.53+-0.38	44.72+-0.36	221.82+-0.82
tZ	14.47+-0.069	11.85+-0.063	11.74+-0.063	9.80+-0.058	47.87+-0.13
Data/MC	1.1	1.09	1.03	1.05	1.07

WZ Transverse Mass distribution :

4/6/2017

 $19^{WZ(\mu\mu\mu)}$ [GeV]

eμμ

ATLAS Internal

μμμ

ATLAS Internal

s = 13 TeV, ∫ L dt = 25 fb

s = 13 TeV, Ldt = 25 fb

m_T^{WZ(µµe)} [GeV]

400E

Z mass distributions :

Distributions of $p_T^Z/Mass_{WZ}$ and $p_T^W/Mass_{WZ}$:

After signal optimization cut selection cuts :

• Cutflow selection after applying :

 $p_T^Z/Mass_{WZ} > 0.35$ and $p_T^W/Mass_{WZ} > 0.35$

Channel	μμμ	еμμ	µee	eee	Inclusive
Data	144	168	106	122	540
Total MC	143.8+-9.19	138.07+-9.79	126.61+-6.92	112.78+-4.43	521.26+-15.75
WZ	98.57+-4	91.04+-3.94	87.69+-3.93	85.83+-3.91	363.13+-7.89
Z+Jets	4.96+-3.59	3.05+-2.15	10.83+-5.49	1.94+-1.94	20.78+-7.17
ZZ	8.91+-0.31	8.50+-0.30	6.58+-0.26	6.69+-0.27	30.70+-0.58
VVV	0.47+-0.02	0.44+-0.02	0.39+-0.02	0.40+-0.03	1.71+-0.06
Z+g	0.27+-0.27	5.35+-1.42	0.003+-0.003	2.49+-0.51	8.12+-1.53
top	6.59+-1.59	2.44+-1.01	6.04+-1.46	1.45+-0.49	16.53+-2.4
ttbarV	15.95+-0.22	15.49+-0.22	13.36+-0.19	12.43+-0.19	57.24+-0.41
tZ	1.91+-0.025	1.72+-0.024	1.69+-0.024	1.54+-0.023	6.86+-0.048
Data/MC	1.001	1.21	0.84	1.08	1.03

Kinematic distributions

qq Category

Before signal optimization cut selection cuts :

- Cutflowselection after selection W and Z candidates.
- Good data/MC agreement in µee and eee channels.

Channel	μμμ	еµµ	µee	eee	Inclusive
Data	1332	1042	896	799	4069
Total MC	1205.29+-42.75	937.59+-29.22	862.31+-22.10	749.12+-21.77	3754.31+-60.36
WZ	766.53+-11.34	613.43+-10.21	605.28+-10.16	514.92+-9.42	2500.17+-20.61
Z+Jets	202.72+-40.94	99.80+-26.89	76.90+-19.15	68.66+-19.26	448.08+-56.01
ZZ	89.20+-0.97	74.98+-0.88	66.29+-0.85	58.63+-0.81	289.09+-1.76
VVV	2.75+-0.087	2.38+-0.075	2.29+-0.075	1.89+-0.066	9.31+-0.15
Z+g	2.01+-0.97	39.79+-3.46	0.62+-0.33	32.86+-2.67	75.28+-4.49
top	64.34+-4.56	41.74+-3.64	51.96+-4.19	21.29+-2.45	179.35+-7.59
ttbarV	65.51+-0.45	55.53+-0.42	49.17+-0.38	42.68+-0.35	212.90+-0.81
tZ	12.23+-0.064	9.93+-0.057	9.79+-0.058	8.17+-0.053	40.13+-0.11
Data/MC	1.10	1.11	1.04	1.06	1.08

Missing Energy distributions :

4/6/2017

Z mass distributions :

Distributions of $p_T^Z/Mass_{WZ}$ and $p_T^W/Mass_{WZ}$:

After signal optimization cut selection cuts :

• Cutflow selection after applying :

 $p_T^Z/Mass_{WZ} > 0.35$ and $p_T^W/Mass_{WZ} > 0.35$

Channel	μμμ	еμμ	µee	eee	Inclusive
Data	140	167	103	121	531
Total MC	140.43+-9.17	134.23+-9.76	122.91+-6.88	109.66+-4.41	507.24+-15.69
WZ	96.42+-3.96	88.16+-3.87	85.14+-3.86	83.69+-3.88	353.42+-7.78
Z+Jets	11.12+-8.11	13.07+-8.78	10.83+-5.49	1.94+-1.94	36.97+-13.30
ZZ	8.80+-0.31	8.36+-0.30	6.45+-0.26	6.49+-0.27	30.12+-0.57
VVV	0.45+-0.029	0.42+-0.027	0.38+-0.026	0.38+-0.032	1.64+-0.057
Z+g	0.27+-0.27	5.33+-1.42	0.0034+-0.003	2.48+-0.51	8.09+-1.53
top	6.29+-1.58	2.44+-1.01	5.91+-1.46	1.45+-0.49	16.11+-2.43
ttbarV	15.41+-0.22	14.96+-0.22	12.72+-0.19	11.92+-0.18	55.015+-0.41
tZ	1.65+-0.024	1.48+-0.022	1.45+-0.022	1.30+-0.021	5.88+-0.045
Data/MC	0.997	1.24	0.84	1.1	1.05

HVT VBS Signal optimization

• the Significance for HVT VBS Signal :

Significance =
$$\frac{S}{\sqrt{S+B}}$$

- Cut applied :
 - ✓ Selection W and Z condidates.
 - ✓ Only events with $N_{jet} \ge 2$ are considred for the analysis VBS.
 - ✓ Applying a scan cut in m_{jj} and $\Delta \eta_{jj}$.

Significance as a function of m_{ij} and $\Delta \eta_{ij}$ cuts:

Significance as a function of m_{jj} and $\Delta \eta_{jj}$ cuts:

3/1/2017

Significance as a function of m_{ij} and $\Delta \eta_{ij}$ cuts:

3/1/2017

32

Variation of m_{ij} and $\Delta \eta_{ij}$ cuts as a function of resonance Mass with Maximum Significance:

 $\Delta \eta_{ij}$ cuts for $m_{ij} = 500$ GeV for all resonance Mass point with Maximum Significance:

$\Delta \eta_{jj}$	Mass Points [GeV]	Signal Yield	Backgrounds Yield	Significance
3.75	250	24.4053	64.8122	2.5838
4	300	13.9297	56.0098	1.66564
4.5	500	1.4278	39.642	0.222796
5.75	700	0.209251	10.8631	0.0628853
5	800	0.184377	25.8282	0.0361506
6	1000	0.041574	7.70172	0.0149403
6	1200	0.0179707	7.70172	0.00646792
6	1300	0.0127084	7.70172	0.0045755
6	1400	0.00903147	7.70172	0.00325245
6	1500	0.00618078	7.70172	0.00222626
6	1600	0.00440858	7.70172	0.00158811
6	1700	0.00342035	7.70172	0.0012322
6	1800	0.00242837	7.70172	0.000874888
6	1900	0.0018197	7.70172	0.000655625
6	2000	0.0012751	7.70172	0.000459425

Conclusion :

- By looking at the HVT signal at the lepton pre-selection level less than 1% gain by adding MET.
- Using the single lepton triggers for HVT signals, we have an efficiency of ~99 %. Not evident gain in signal HVT or WZ SM by adding MET triggers to our final selection.
- Small gain in trigger efficiency was seen in data by adding MET triggers to the nominal selection.
- Decreasing the ZZ veto pt lepton cut from 20 GeV to 7 GeV, reduces the ZZ background by more than 25%. While the dominant background WZ SM is not affected by this cut.
- VBS and qq signal categories were defined
- The HVT signal efficiency was compared between inclusive and qq categories. A small effect of less than 3% was found for all mass points.
- Very little impact was also found on the background
- No effect is seen on kinematic distribution
- A cuts scan in m_{jj} and $\Delta \eta_{jj}$ for different HVT VBS Mass point was applied .