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Introduction

 The aim of this study is to give a performance comparison between the actual ATLAS Forward Calorimeter
and the ATLAS super Forward Calorimeter (sFCal) as a proposed replacement for the forward calorimeter at
High Luminosity LHC.

* A standalone Geant4 simulation of FCal and sFCal was performed to study the impact of readout granularity

on position and energy resolution.
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The Large Hadrons Collider and ATLAS Experiment

The Large Hadron Collider (LHC) is the world’s largest and most powerful particle accelerator. It consists of a 27 Km ring

of superconducting magnets .
Desingned to collid beams of 7 TeV protons with instantaneous luminosities from 6.1033cm™2s~ 1 to 103*cm™2s~1.
* Physics goals :

o Discovery of the Standard Model Higgs Boson (Summer 2012).

o Search for physics beyond the Standard Model
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ATLAS Experiment

e ATLAS Experiment is one of the detectors built around one of the four collision points of the LHC. It consists of four

major components :
o Inner detectors : Measures the momentum of each charged particle.
o Liquid agron and tile calorimeters : Measures energies carried by neutral and charged particles.
o Muon spectrometers : Identifies and measures the momenta of muons.

o Magnet System : Bends the trajectories of each charged particle to allow the measurement of its momentum

44m

25m

Tile calorimeters
LAr hadronic end-cap and
forward calorimeters

r

LAr electromagnetic calorimeters

Pixel detectol

Toroid magnets
Muon chambers Solenoid magnet | Transition radiation tracker

29/03/2017 Semiconductor tracker .



Upgrade Plan for The Large Hadrons Collider (HL-LHC)

2009 LHC startup, Vv s =900 GeV

2011 | Vs=7~8 TeV, L=6x1033 cm2s1, BS: 50ns

2013 Go to design energy, nominal luminosity

2016 | Vs=13~14 TeV, L~1x103* cm2s?, BS: 25ns

2018 LHC Phase-1 upgrade to full design luminosity

20-25 fbt

~75-100 fb?

2020 | V 5=14 TeV, L~2x10%* cm2s?, BS: 25ns

~350 fb?

2022 HL-LHC Phase-2 upgrade

i V s=14 TeV, L=5x10%* cm2s1,
i luminosity leveling

~3000 fbt
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LHC plans a luminosity upgrade for sometime after 2020.

2.1

034 s~ 1,

Plan is for instantaneous luminosity of 5.10°*cm™
ATLAS was not designed to run at this luminosity and
some components may not survive the integrated

dosel!l,



ATLAS Forward Calorimeter .

The liquid argon Forward Calorimeter (FCal) covers the pseudo-rapidity of about
3.1 to 4.9, its consist of three LAr calorimeter modules named FCall, FCal2 and
FCal3. The particles produced at the interaction point travel 4.7 m before hitting
the front of the FCal.

The first module FCall is made of a copper absorber matrix in which a hexagonal
range of copper tubes (anodes) and copper rods (cathodes) with 270 um of
liguid-argon gaps between is maintained by PEEK fiber.

FCal2 and FCal3 modules are a hadronic Lar calorimeters of tungsten tubes
because tungsten is a very high density material where the particles have a
short free path. The gap between the anode and the cathode forms the gap in
which is liquid argon of size 380 um and 500 um respectively in both modules.

High voltage supplied to electrode via 1IMQ to 2MQ resistors on summing boards.
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ATLAS FCal at HL-LHC .

Qualitative illustration of the expected degradation
of FCall and FCal2 in High n region with luminosity
increasing from LHC to HL-LHC

1 x 10* 3 x 10% 5x 10%

FCall

FCal2
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The ATLAS forward calorimeter is located in the environment near
the LHC beam-line where the particle density and the radiation
dose are highest.

The positive argon ions build up in the liquid argon and deform
the electric field, the electrons begin to accumulate near the
anode while the electric field falls almost to zero.

In this region the positive argon ions and electrons recombine, as
a result of that the signal will break down.

These resistors are too large to limit current at HL-LHC and then a
significant voltage drop across resistors inside cryostat. The heat
generated in the calorimeter absorbers due to energy losses will

grow and could boil the liquid argon.



Upgrade Plan for the FCal ATLAS at HL-LHC .

Two solutions for reduction of the degradation are under study :

o the first option is a complete replacement of the actual FCal system, the new FCal called supper-FCal (sFCal) would

have similar design as the existing FCal, with a smaller liquid argon ionization gaps 0.1mm for FCall, and lower

High voltage protection resistors values .

o The second proposed solution is the installation of a small calorimeter named Mini-FCal .

“This task focus in to simulation studies of the FCal (sFCal)
in order to evaluate the impact of a finer readout
granularity on the pile-up separation and the jet

resolution in the high eta region”
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sFCal/FCal Standalone simulation

* This study uses a MC samples that have been taken from Monte Carlo Fcal/sFCal standalone simulation
fcalsim/sfcalsim under Geant4.
* The analysis is performed using a collection of Ntuples provided by the FCal/sFCal standalone simulation saved as

fcal.root/sfcal.root which illustrate the final state of the most important kinematics variables.

Particle | MC Sampels Number of events
fcal_e _SGeV.root 20000
fcal_e _10GeV.root 20000
fcal_e_20GeV.root 20000
fcal_e_S50GeV.root 20000
fcal_e_100GeV.root 10000
feal_e _200GeV.root 10000
fcal_e_300GeV.root 10000
. fcal_e _S00GeV.root 10000 FCRiR Foal | g
sfcal_e_SGeV.root 20000
sfcal _e_10GeV.root 20000
sfcal_e_20GeV.root 20000
sfcal_e_50GeV.root 20000
sfcal_e_100Ge V.root 10000
sfcal_e_200Ge V.root 10000
sfcal_e_300Ge V.root 10000
sfcal_e_500Ge V.root 10000




FCal/sFCal response to electrons : Energy reconstruction.

Reconstructed energy was obtained by summing the energies of all channels within 80 mm for electrons distance of the

beam-particle impact point.

« Response = Average signal per unit of deposited energy. 1= ?;:“JTE;‘E

A linear calorimeter has a constant response.

Electromagnetic calorimeters are in general linear. If not linear.  ¢uster 80 mm
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FCal/sFCal response to electrons : Energy resolution
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The energy resolution for a given calorimeter system should vary with
particle energy and can be written in a more general way as: %e_ 3 Db
VE

£ s
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@ .
E 11H-
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E.. [GeV]
Detector | Stochastic term (% VGeV) | Canstant term (%)
FCal 25.5+0.68 6.09+0.14
sFCal 28.6+0.53 6.71x0.11

* The Energy Resolution for electrons is slightly worst in sFCal

than FCal, since the LAr gap size is small in sFCal than Fcal

E
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FCal Pointing @ resolution

* A study of the position resolution along the coordinate of the first module of FCal/sFCal was performed. The
measured coordinate is defined using the center of gravity technique in the calorimeter’s Cell. This technique needs
the knowledge of the energy and the angle of incidence of the electron in a cell, and the measured is given as

follows : N E &
('b _ J.’: ] 1=
P Measured N E. -
i=1 1!
o [ =]
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FCal Pointing @ resolution ¢ trurthvs ¢ measured
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 Due to the finite size of the cells in the FCal the energy
weighted barycenter of a cluster is shifted to the center of a
cell in direction, conducting to well known ”S” shape in the
measurement of the electrons position.

e Linear interpolation .

e LW is a way to correct S_shape position in the calorimeter

wher:

O¢ = X PceliWcell
¢ X Wcell 14




Pointing ¢ resolution
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sFCal Pointing @ resolution - 100 GeV e-
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Fcal/sFCal Pointing ¢ resolution Vs Energy

Pointing ¢ resolution [mrad]

* ¢ between 0to2n

* 15 between 3.5t04.5

sFCal sFCal LW
a[mrad.vVGeV] | 43.21+25 | 38+0.10
b [mrad] 6.60+0.6 | 0.75+0.032
FCal FCal S_shape | FCalLW
a[mrad.vVGeV] | 44.4+£2.45 | 49.1+£2.1 50.942.23
b [mrad] 18+0.38 | 8.65+0.51 | 2.73%0.96
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The pointing resolution in ¢ for electrons is

clearly better in SFCal than FCal.

17



Conclusion :

* Upgrade goal : maintain the existing FCal performance at HL-LHC.

* Replace FCal with improved detector sFCal — smaller gaps ,new summing boards
(lower resistances).

* The pointing resolution in ¢ for electrons is clearly better in SFCal than FCal.

* The Energy Resolution for electrons is slightly worse in sFCal than FCal, since the

LAr gap size is small in sFCal than FCal.



