cryoBLM: a few comments...

HL-LHC WP13 Meeting, 3rd April 2017

James Storey (BE-BI-BL)

Cryogenic irradiation 2012-15 \rightarrow scCVD and p+-n-n+ silicon operational after 10¹⁶ p cm⁻², but Charge Collection Efficiency (CCE) decreases by a factor ~= 10.

scCVD

1.Erratic discharges observed at bias voltages > 100V:

- Limits CCE \rightarrow can't exploit superior radiation hardness compared to silicon.
- Stability at bias voltages < 100V?
- 2.Polarisation due to asymmetric trap filling:
 - Reduction of CCE → can be prevented by i) switching bias polarity (period?) or overcome by increasing bias voltage (limited by erratic discharge).

3.Charge per particle depends on flux rate.

pcCVD

Compared to scCVD:

- Erratic discharges not seen in 0.5T magnetic field.
- Charge per particle independent of flux rate.
- Less prone to polarisation than scCVD.
- Charge per particle $\sim 1/2$ that of scCVD.

p+-n-n+ silicon pad detectors

- CCE(300um p⁺-n-n⁺ silicon sensor) \simeq CCE (scCVD with V_{bias}=100V).
- Promising results for 100um sensors.
- Polarisation effect also reported to have been seen in silicon at low temperatures.

Open questions:

- 1. How to solve erratic discharge of diamond sensors to enable superior radiation hardness of diamonds to be fully exploited?
 - Study dependancy of erratic discharge of pcCVD on magnetic field strength & angle.
- 2. Can diamond CCE be improved by addressing the polarisation effect?
 - Switching polarity, increasing bias voltage.
- 3. Study dependancy of the charge per particle on the flux rate.
- 4. Quantitative comparison of 100um p⁺-n-n⁺ silicon sensor vs. svCVD at V_{bias}=100V.