Supersymmetric Features of Hadron Physics and Properties of Quantum Chromodynamics from Light-Front Holography and Superconformal Algebra

Universidad Técnica Federico Santa María, Valparaiso, Chile January 8-12, 2018

with Guy de Tèramond, Hans Günter Dosch, C. Lorcè, M. Nielsen, K. Chiu, R. S. Sufian, A. Deur Stan Brodsky

The leading Regge trajectory: Δ resonances with maximal J in a given mass range. Also shown is the Regge trajectory for mesons with J = L+S.

Superconformal Algebra

2X2 Hadronic Multiplets: 4-Plet

Bosons, Fermions with Equal Mass!

Proton: lu[ud]> Quark + Scalar Diquark Equal Weight: L=0, L=1

Meson			Baryon			Tetraquark		
q-cont	$J^{P(C)}$	Name	q-cont	J^P	Name	q-cont	$J^{P(C)}$	Name
$\bar{q}q$	0-+	$\pi(140)$						
$\bar{q}q$	1+-	$h_1(1170)$	ud q	$(1/2)^+$	N(940)	$[ud][\bar{u}\bar{d}]$	0_{++}	$\sigma(500)$
$\bar{q}q$	2^{-+}	$\pi_2(1670), \ \eta_2(1645)$	[ud]q	$(3/2)^{-}$	$N_{\frac{3}{2}}$ (1520)	$[ud][\bar{u}\bar{d}]$	1-+	
$\bar{q}q$	1	$\rho(770), \ \omega(780)$						
$\bar{q}q$	2^{++}	$a_2(1320), f_2(1270)$	(qq)q	$(3/2)^+$	$\Delta(1232)$	$(qq)[\bar{u}\bar{d}]$	1++	$a_1(1260)$
							1+-	$b_1(1235)$
$\bar{q}q$	3	$\rho_3(1690), \ \omega_3(1670)$	(qq)q	$(3/2)^{-}$	$\Delta_{\frac{3}{2}}$ (1700)	$(qq)[\bar{u}\bar{d}]$	2	
ar q q	4++	$a_4(2040), f_4(2050)$	(qq)q	$(7/2)^+$	$\Delta_{\frac{7}{2}}^{2}$ (1950)	$(qq)[\bar{u}\bar{d}]$	3++	
$\bar{q}s$	0-	$\bar{K}(495)$						
$\bar{q}s$	1+	$\bar{K}_1(1270)$	ud s	$(1/2)^+$	$\Lambda(1115)$	$[ud][\bar{s}\bar{q}]$	0+	$K_0^*(1430)$
$\bar{q}s$	2-	$K_2(1770)$	[ud]s	$(3/2)^{-}$	$\Lambda(1520)$	$[ud][\bar{s}\bar{q}]$	1-	
$\bar{s}q$	0_	K(495)						
$\bar{s}q$	1+	$K_1(1270)$	[sq]q	$(1/2)^+$	$\Sigma(1190)$	$[sq][\bar{s}\bar{q}]$	0_{++}	$a_0(980)$
								$f_0(980)$
$\bar{s}q$	1-	$K^*(890)$						
$\bar{s}q$	2^{+}	$K_2^*(1430)$	(sq)q	$(3/2)^+$	$\Sigma(1385)$	$(sq)[\bar{u}\bar{d}]$	1+	$K_1(1400)$
$\bar{s}q$	3-	$K_3^*(1780)$	(sq)q	$(3/2)^{-}$	$\Sigma(1670)$	$(sq)[\bar{u}\bar{d}]$	2^{-}	_
$\bar{s}q$	4+	$K_4^*(2045)$	(sq)q	$(7/2)^+$	$\Sigma(2030)$	$(sq)[\bar{u}\bar{d}]$	3+	—
$\bar{s}s$	0_{-+}	$\eta(550), \ \eta'(958)$						_
$\bar{s}s$	1+-	$h_1(1380)$	[sq]s	$(1/2)^+$	$\Xi(1320)$	$[sq][\bar{s}\bar{q}]$	0_{++}	$f_0(1370)$
								$a_0(1450)$
$\bar{s}s$	2-+	$\eta_2(1870)$	[sq]s	$(3/2)^{-}$	$\Xi(1620)$	$[sq][\bar{s}\bar{q}]$	1-+	
$\bar{s}s$	1	$\Phi(1020)$						
$\bar{s}s$	2^{++}	$f_2'(1525)$	(sq)s	$(3/2)^+$	$\Xi^*(1530)$	$(sq)[\bar{s}\bar{q}]$	1++	$f_1(1420)$
				,	,			$a_1(1420)$
$\bar{s}s$	3	$\Phi_3(1850)$	(sq)s	$(3/2)^{-}$	$\Xi(1820)$	$(sq)[\bar{s}\bar{q}]$	2	
$\bar{s}s$	2++	$f_2(1640)$	(ss)s	$(3/2)^+$	$\Omega(1672)$	$(ss)[\bar{s}\bar{q}]$	1+	$K_1(1650)$

New Organization of the Hadron Spectrum M. Nielsen

Need a First Approximation to QCD

Comparable in simplicity to Schrödinger Theory in Atomic Physics

Relativistic, Frame-Independent, Color-Confining

Origin of hadronic mass scale

AdS/QCD Light-Front Holography Superconformal Algebra

No parameters except for quark masses

Light-Front Time

Each element of flash photograph illuminated at same LF time

$$\tau = t + z/c$$

Causal, frame-independent

Evolve in LF time

$$P^{-} = i \frac{d}{d\tau}$$

$$P^{\pm} = P^0 \pm P^z$$

Eigenstate -- independent of T

Eigenvalue
$$P^- = \frac{\mathcal{M}^2 + \vec{P}_{\perp}^2}{P^+}$$

$$H_{LF} = P^{\mu}P_{\mu} = P^{+}P^{-} - \vec{P}_{\perp}^{2}$$

$$H_{LF}^{QCD}|\Psi_h> = \mathcal{M}_h^2|\Psi_h>$$

HELEN BRADLEY - PHOTOGRAPHY

Measurements of hadron LF wavefunction are at fixed LF time

Like a flash photograph

Fixed
$$\tau = t + z/c$$

$$x_{bj} = x = \frac{k^+}{P^+}$$

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

Invariant under boosts! Independent of Ph

 $\sum_{i}^{n} \vec{k}_{\perp i} = \vec{O}_{\perp}$

Causal, Frame-independent, Simple Vacuum, Current Matrix Elements are overlap of LFWFS

Bound States in Relativistic Quantum Field Theory:

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau = t + z/c$

Invariant under boosts. Independent of P^{μ}

$$H_{LF}^{QCD}|\psi>=M^2|\psi>$$

Direct connection to QCD Lagrangian

Off-shell in invariant mass

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

$$H_{LF}^{QCD}|\Psi_h>=\mathcal{M}_h^2|\Psi_h>$$

$$|p,S_z>=\sum_{n=3}\Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)|n;\vec{k}_{\perp i},\lambda_i>$$

sum over states with n=3, 4, ... constituents

The Light Front Fock State Wavefunctions

$$\Psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ} .

The light-cone momentum fractions

$$x_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}$$

are boost invariant.

$$\sum_{i}^{n} k_{i}^{+} = P^{+}, \ \sum_{i}^{n} x_{i} = 1, \ \sum_{i}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.$$

Intrinsic heavy quarks $\bar{s}(x) \neq s(x)$ $\bar{s}(x) \neq \bar{s}(x) \neq \bar{d}(x)$ $\bar{u}(x) \neq \bar{d}(x)$

$$\bar{s}(x) \neq s(x)$$
 $\bar{u}(x) \neq \bar{d}(x)$

Advantages of the Dirac's Front Form for Hadron Physics Poincare' Invariant

Physics Independent of Observer's Motion

- Measurements are made at fixed τ
- Causality is automatic
- Structure Functions are squares of LFWFs
- Form Factors are overlap of LFWFs
- LFWFs are frame-independent: no boosts, no pancakes!

Penrose, Terrell, Weisskopf

- Same structure function measured at an e p collider and the proton rest frame
- No dependence of hadron structure on observer's frame
- LF Holography: Dual to AdS space
- LF Vacuum trivial -- no vacuum condensates!
- Profound implications for Cosmological Constant

Roberts, Shrock, Tandy, sjb

Light-Front Perturbation Theory for pQCD

$$T = H_I + H_I \frac{1}{\mathcal{M}_{initial}^2 - \mathcal{M}_{intermediate}^2 + i\epsilon} H_I + \cdots$$

- "History": Compute any subgraph only once since the LFPth numerator does not depend on the process — only the denominator changes!
- Wick Theorem applies, but few amplitudes since all $k^+ > 0$.

• Jz Conservation at every vertex
$$|\sum_{initial} S^z - \sum_{final} S_z| \le n$$
 at order g^n K. Chiu, sjb

- Unitarity is explicit
- Loop Integrals are 3-dimensional $\int_0^1 dx \int d^2k_{\perp}$
- hadronization: coalesce comoving quarks and gluons to hadrons using light-front wavefunctions $\Psi_n(x_i, k_{\perp i}, \lambda_i)$

QED atoms: positronium and muonium

Coupled Fock states

$$\left[-\frac{\Delta^2}{2m_{\rm red}} + V_{\rm eff}(\vec{S}, \vec{r})\right] \psi(\vec{r}) = E \ \psi(\vec{r})$$

Effective two-particle equation

Includes Lamb Shift, quantum corrections

$$\left[-\frac{1}{2m_{\rm red}} \frac{d^2}{dr^2} + \frac{1}{2m_{\rm red}} \frac{\ell(\ell+1)}{r^2} + V_{\rm eff}(r, S, \ell) \right] \psi(r) = E \psi(r)$$

$$V_{eff} \to V_C(r) = -\frac{\alpha}{r}$$

Semiclassical first approximation to QED

Spherical Basis $r, heta, \phi$

Coulomb potential

Bohr Spectrum

Schrödinger Eq.

Light-Front QCD

$$(H_{LF}^0 + H_{LF}^I)|\Psi> = M^2|\Psi>$$

$$\left[\frac{\vec{k}_{\perp}^{2} + m^{2}}{x(1-x)} + V_{\text{eff}}^{LF}\right] \psi_{LF}(x, \vec{k}_{\perp}) = M^{2} \psi_{LF}(x, \vec{k}_{\perp})$$

$$\left[-\frac{d^2}{d\zeta^2} + \frac{1 - 4L^2}{4\zeta^2} + U(\zeta) \right] \psi(\zeta) = \mathcal{M}^2 \psi(\zeta)$$

AdS/QCD:

$$U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1)$$

Semiclassical first approximation to QCD

Coupled Fock states

Eliminate higher Fock states and retarded interactions

Effective two-particle equation

Azimuthal Basis

$$\zeta, \phi$$

$$m_q = 0$$

Confining AdS/QCD potential!

Sums an infinite # diagrams

AdS/QCD Soft-Wall Model

$$e^{\varphi(z)} = e^{+\kappa^2 z^2}$$

$$\zeta^2 = x(1-x)\mathbf{b}_{\perp}^2$$

Light-Front Holography

$$\left[-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + U(\zeta) \right] \psi(\zeta) = M^2 \psi(\zeta)$$

Light-Front Schrödinger Equation

$$U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1)$$

Single variable ζ

Confinement scale:

$$\kappa \simeq 0.5~GeV$$

Unique Confinement Potential!

Conformal Symmetry of the action

- de Alfaro, Fubini, Furlan:
- Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

AdS₅

ullet Isomorphism of SO(4,2) of conformal QCD with the group of isometries of AdS space

$$ds^2 = \frac{R^2}{z^2} (\eta_{\mu\nu} dx^\mu dx^\nu - dz^2), \end{measure}$$
 invariant measure

 $x^{\mu} \to \lambda x^{\mu}, \ z \to \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- ullet Different values of z correspond to different scales at which the hadron is examined.

$$x^2 \to \lambda^2 x^2, \quad z \to \lambda z.$$

 $x^2 = x_\mu x^\mu$: invariant separation between quarks

 $\bullet\,$ The AdS boundary at $z\to 0$ correspond to the $Q\to \infty$, UV zero separation limit.

AdS/CFT

Dilaton-Modified AdS/QCD

$$ds^{2} = e^{\varphi(z)} \frac{R^{2}}{z^{2}} (\eta_{\mu\nu} x^{\mu} x^{\nu} - dz^{2})$$

- \bullet Soft-wall dilaton profile breaks conformal invariance $e^{\varphi(z)}=e^{+\kappa^2z^2}$
- Color Confinement in z
- Introduces confinement scale K
- Uses AdS₅ as template for conformal theory

HEP2018
7th International Conference on
High Energy Physics in the LHC Era
Universidad Técnica Federico Santa María,
Valparaiso. Chile 1-11-2018

Supersymmetric Features of QCD from LF Holography

Ads Soft-Wall Schrödinger Equation for bound state of two scalar constituents:

$$\left[-\frac{d^2}{dz^2} - \frac{1 - 4L^2}{4z^2} + U(z) \right] \Phi(z) = \mathcal{M}^2 \Phi(z)$$

$$U(z) = \kappa^4 z^2 + 2\kappa^2 (L + S - 1)$$

Derived from variation of Action for Dilaton-Modified AdS5

Identical to Single-Variable Light-Front Bound State Equation in ζ !

$$\zeta = \sqrt{x(1-x)\vec{b}_{\perp}^2}$$

Light-Front Holographic Dictionary

$$\psi(x,\vec{b}_{\perp})$$
 $\phi(z)$

Light-Front Holography: Unique mapping derived from equality of LF and AdS formula for EM and gravitational current matrix elements and identical equations of motion

Massless pion!

Meson Spectrum in Soft Wall Model

$$m_{\pi} = 0$$
 if $m_q = 0$

Pion: Negative term for J=0 cancels positive terms from LFKE and potential

- ullet Effective potential: $U(\zeta^2)=\kappa^4\zeta^2+2\kappa^2(J-1)$
- LF WE

$$\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + \kappa^4 \zeta^2 + 2\kappa^2 (J - 1)\right) \phi_J(\zeta) = M^2 \phi_J(\zeta)$$

ullet Normalized eigenfunctions $\langle \phi | \phi \rangle = \int d\zeta \, \phi^2(z)^2 = 1$

$$\phi_{n,L}(\zeta) = \kappa^{1+L} \, \sqrt{\frac{2n!}{(n+L)!}} \, \zeta^{1/2+L} e^{-\kappa^2 \zeta^2/2} L_n^L(\kappa^2 \zeta^2)$$

Eigenvalues

$$\mathcal{M}_{n,J,L}^2 = 4\kappa^2 \left(n + \frac{J+L}{2}\right)$$

$$\vec{\zeta}^2 = \vec{b}_\perp^2 x (1 - x)$$

G. de Teramond, H. G. Dosch, sjb

$$oldsymbol{I} = L + S$$
 , $I = 1$ meson families $oldsymbol{\mathcal{M}_{n,L,S}^2} = 4\kappa^2 \left(n + L + S/2
ight)$

$$\mathcal{M}_{n,L,S}^2 = 4\kappa^2 \left(n + L + S/2 \right)$$

$$4\kappa^2$$
 for $\Delta n=1$ $4\kappa^2$ for $\Delta L=1$ $2\kappa^2$ for $\Delta S=1$

Massless pion in Chiral Limit!

Same slope in n and L!

I=1 orbital and radial excitations for the π ($\kappa=0.59$ GeV) and the ho-meson families ($\kappa=0.54$ GeV)

Triplet splitting for the I=1, L=1, J=0,1,2, vector meson a-states

$$\mathcal{M}_{a_2(1320)} > \mathcal{M}_{a_1(1260)} > \mathcal{M}_{a_0(980)}$$

Mass ratio of the ρ and the a₁ mesons: coincides with Weinberg sum rules

G. de Teramond, H. G. Dosch, sjb

Uniqueness of Dilaton

$$\varphi_p(z) = \kappa^p z^p$$

Dosch, de Tèramond, sjb

Fig: Orbital and radial AdS modes in the soft wall model for κ = 0.6 GeV .

Soft Wall Model Same slope in n and L!

Light meson orbital (a) and radial (b) spectrum for $\kappa=0.6$ GeV.

Effective mass from m(p2)

Prediction from AdS/QCD: Meson LFWF

$$\psi_M(x,k_{\perp}) = \frac{4\pi}{\kappa\sqrt{x(1-x)}} e^{-\frac{k_{\perp}^2}{2\kappa^2x(1-x)}} \quad \left[\phi_{\pi}(x) = \frac{4}{\sqrt{3}\pi} f_{\pi} \sqrt{x(1-x)}\right]$$

$$f_{\pi} = \sqrt{P_{q\bar{q}}} \frac{\sqrt{3}}{8} \kappa = 92.4 \text{ MeV}$$
 Same as DSE!

C. D. Roberts et al.

Provides Connection of Confinement to Hadron Structure

• Light Front Wavefunctions:

$$\Psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$$

off-shell in P^- and invariant mass $\mathcal{M}_{q\bar{q}}^2$

Boost-invariant LFWF connects confined quarks and gluons to hadrons

AdS/QCD Holographic Wave Function for the ρ Meson and Diffractive ρ Meson Electroproduction

5

10

 $\operatorname{Q}^2\left[\operatorname{GeV}^2\right]$

20

15

25

T. Liu,
G. de Tèramond,
G. Dosch, A. Deur,
R.S. Sufian, sjb
(preliminary)

$$q_{\pi}(x, Q^2 < Q_0^2) = \int d^2 \vec{k}_{\perp} |\psi_{\pi}(x, \vec{k}_{\perp})|^2$$

$$\psi_M(x, k_\perp) = \frac{4\pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_\perp^2}{2\kappa^2 x(1-x)}}$$

"No parameters"

Start DGLAP evolution at transition scale Q²₀

QCD Lagrangian

$$\mathcal{L}_{QCD} = -\frac{1}{4} Tr(G^{\mu\nu} G_{\mu\nu}) + \sum_{f=1}^{n_f} i \bar{\Psi}_f D_{\mu} \gamma^{\mu} \Psi_f + \sum_{f=1}^{n_f} \chi_f \bar{\Psi}_f \Psi_f$$

$$iD^{\mu} = i\partial^{\mu} - gA^{\mu} \qquad G^{\mu\nu} = \partial^{\mu}A^{\mu} - \partial^{\nu}A^{\mu} - g[A^{\mu}, A^{\nu}]$$

Classical Chiral Lagrangian is Conformally Invariant

Where does the QCD Mass Scale come from?

QCD does not know what MeV units mean! Only Ratios of Masses Determined

• de Alfaro, Fubini, Furlan:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Unique confinement potential!

de Alfaro, Fubini, Furlan (dAFF)

$$G|\psi(\tau)>=i\frac{\partial}{\partial\tau}|\psi(\tau)>$$

$$G=uH+vD+wK$$

$$G=H_{\tau}=\frac{1}{2}\big(-\frac{d^2}{dx^2}+\frac{g}{x^2}+\frac{4uw-v^2}{4}x^2\big)$$

Retains conformal invariance of action despite mass scale!

$$4uw - v^2 = \kappa^4 = [M]^4$$

Identical to LF Hamiltonian with unique potential and dilaton!

$$\left[-\frac{d^2}{d\zeta^2} + \frac{1 - 4L^2}{4\zeta^2} + U(\zeta) \right] \psi(\zeta) = \mathcal{M}^2 \psi(\zeta)$$
$$U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1)$$

Dosch, de Teramond, sjb

dAFF: New Time Variable

$$\tau = \frac{2}{\sqrt{4uw - v^2}} \arctan\left(\frac{2tw + v}{\sqrt{4uw - v^2}}\right),\,$$

- Identify with difference of LF time $\Delta x^+/P^+$ between constituents
- Finite range
- Measure in Double-Parton Processes

Retains conformal invariance of action despite mass scale!

Haag, Lopuszanski, Sohnius (1974)

Superconformal Quantum Mechanics

$$\{\psi, \psi^+\} = 1$$
 $B = \frac{1}{2}[\psi^+, \psi] = \frac{1}{2}\sigma_3$

$$\psi = \frac{1}{2}(\sigma_1 - i\sigma_2), \quad \psi^+ = \frac{1}{2}(\sigma_1 + i\sigma_2)$$

$$Q = \psi^{+}[-\partial_{x} + \frac{f}{x}], \quad Q^{+} = \psi[\partial_{x} + \frac{f}{x}], \quad S = \psi^{+}x, \quad S^{+} = \psi x$$

$${Q, Q^+} = 2H, {S, S^+} = 2K$$

$${Q, S^{+}} = f - B + 2iD, \quad {Q^{+}, S} = f - B - 2iD$$

generates conformal algebra

$$[H,D] = i H, \quad [H, K] = 2 i D, \quad [K, D] = -i K$$

$$Q \simeq \sqrt{H}, \quad S \simeq \sqrt{K}$$

Superconformal Quantum Mechanics

Baryon Equation
$$Q \simeq \sqrt{H}, S \simeq \sqrt{K}$$

Consider $R_w = Q + wS;$

w: dimensions of mass squared

$$G = \{R_w, R_w^+\} = 2H + 2w^2K + 2wfI - 2wB \qquad 2B = \sigma_3$$

Retains Conformal Invariance of Action

Fubini and Rabinovici

New Extended Hamiltonian G is diagonal:

$$G_{11} = \left(-\partial_x^2 + w^2 x^2 + 2wf - w + \frac{4(f + \frac{1}{2})^2 - 1}{4x^2}\right)$$

$$G_{22} = \left(-\partial_x^2 + w^2x^2 + 2wf + w + \frac{4(f - \frac{1}{2})^2 - 1}{4x^2}\right)$$

Identify
$$f - \frac{1}{2} = L_B$$
, $w = \kappa^2$

Eigenvalue of G: $M^2(n, L) = 4\kappa^2(n + L_B + 1)$

Baryon Equation

$$\left(-\partial_{\zeta}^{2} + \kappa^{4}\zeta^{2} + 2\kappa^{2}(L_{B} + 1) + \frac{4L_{B}^{2} - 1}{4\zeta^{2}}\right)\psi_{J}^{+} = M^{2}\psi_{J}^{+} - \frac{1}{4\zeta^{2}}$$

$$\left(-\partial_{\zeta}^{2} + \kappa^{4}\zeta^{2} + 2\kappa^{2}L_{B} + \frac{4(L_{B} + 1)^{2} - 1}{4\zeta^{2}}\right)\psi_{J}^{-} = M^{2}\psi_{J}^{-}$$

$$M^2(n, L_B) = 4\kappa^2(n + L_B + 1)$$

Meson Equation

$$\left(-\partial_{\zeta}^{2} + \kappa^{4}\zeta^{2} + 2\kappa^{2}(J-1) + \frac{4L_{M}^{2}-1}{4\zeta^{2}}\right)\phi_{J} = M^{2}\phi_{J}$$

$$M^2(n, L_M) = 4\kappa^2(n + L_M)$$

S=0, P=+ Same κ!

S=1/2, P=+

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon Meson-Baryon Degeneracy for $L_M=L_B+1$

Dosch, de Teramond, Lorce, sjb

$$m_u = m_d = 46 \text{ MeV}, m_s = 357 \text{ MeV}$$

Fit to the slope of Regge trajectories, including radial excitations

Same Regge Slope for Meson, Baryons: Supersymmetric feature of hadron physics

Solid line: $\kappa = 0.53$ GeV

Superconformal meson-nucleon partners

de Tèramond, Dosch, sjb

Solid line: $\kappa = 0.53$ GeV

Superconformal meson-nucleon partners

de Tèramond, Dosch, sjb

Universal Hadronic Features

Universal quark light-front kinetic energy

$$\Delta \mathcal{M}_{LFKE}^2 = \kappa^2 (1 + 2n + L)$$

Equal: Virial Theorem!

Universal quark light-front potential energy

Universal Constant Term

$$\mathcal{M}_{spin}^2 = 2\kappa^2(S + L - 1 + 2n_{diquark})$$

$$M^{2} = \Delta \mathcal{M}_{LFKE}^{2} + \Delta \mathcal{M}_{LFPE}^{2} + \Delta \mathcal{M}_{spin}^{2}$$
$$+ \langle \sum_{i} \frac{m_{i}^{2}}{x_{i}} \rangle$$

Fermionic Modes and Baryon Spectrum

[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

Eigenstate!

Nucleon LF modes

$$\psi_{+}(\zeta)_{n,L} = \kappa^{2+L} \sqrt{\frac{2n!}{(n+L)!}} \zeta^{3/2+L} e^{-\kappa^{2}\zeta^{2}/2} L_{n}^{L+1} \left(\kappa^{2}\zeta^{2}\right)$$

$$\psi_{-}(\zeta)_{n,L} = \kappa^{3+L} \frac{1}{\sqrt{n+L+2}} \sqrt{\frac{2n!}{(n+L)!}} \zeta^{5/2+L} e^{-\kappa^{2}\zeta^{2}/2} L_{n}^{L+2} \left(\kappa^{2}\zeta^{2}\right)$$

Normalization

$$\int_0^{\infty} d\zeta \, \int_0^1 dx \psi_+^2(\zeta^2, x) = \int_0^{\infty} d\zeta \, \int_0^1 dx \psi_-^2(\zeta^2, x) = \frac{1}{2} \quad \begin{array}{c} \text{Quark Chiral} \\ \text{Symmetry of} \end{array}$$

Eigenvalues

$$\mathcal{M}_{n,L,S=1/2}^2 = 4\kappa^2 (n+L+1)$$

"Chiral partners"

$$\frac{\mathcal{M}_{N(1535)}}{\mathcal{M}_{N(940)}} = \sqrt{2}$$

$\frac{\mathcal{M}_{N(1535)}}{\mathcal{M}_{N(940)}} = \sqrt{2}$

Nucleon: Equal Probability for L=0, I

Features of Supersymmetric Equations

 J =L+S baryon simultaneously satisfies both equations of G with L, L+1 with same mass eigenvalue

•
$$J^z = L^z + 1/2 = (L^z + 1) - 1/2$$

$$S^z = \pm 1/2$$

Proton spin carried by quark Lz

$$=\frac{1}{2}(S_{q}^{z}=\frac{1}{2},L^{z}=0)+\frac{1}{2}(S_{q}^{z}=-\frac{1}{2},L^{z}=1)=< L^{z}>=\frac{1}{2}$$

• Mass-degenerate meson "superpartner" with L_M=L_B+1. "Shifted meson-baryon Duality"

Mesons and baryons have same κ !

HEP2018
7th International Conference on
High Energy Physics in the LHC Era
Universidad Técnica Federico Santa María,
Valparaiso. Chile 1-11-2018

Supersymmetric Features of QCD from LF Holography

Chiral Features of Soft-Wall AdS/QCD Model

- Boost Invariant
- Trivial LF vacuum! No vacuum condensate, but consistent with GMOR
- Massless Pion
- Hadron Eigenstates (even the pion) have LF Fock components of different Lz
- Proton: equal probability $S^z = +1/2, L^z = 0; S^z = -1/2, L^z = +1$ $J^z = +1/2 : < L^z > = 1/2, < S^z_q > = 0$
- Self-Dual Massive Eigenstates: Proton is its own chiral partner.
- Label State by minimum L as in Atomic Physics
- Minimum L dominates at short distances
- AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=o.

 No mass -degenerate parity partners!

Space-Like Dirac Proton Form Factor

Consider the spin non-flip form factors

$$F_{+}(Q^{2}) = g_{+} \int d\zeta J(Q,\zeta) |\psi_{+}(\zeta)|^{2},$$

$$F_{-}(Q^{2}) = g_{-} \int d\zeta J(Q,\zeta) |\psi_{-}(\zeta)|^{2},$$

where the effective charges g_+ and g_- are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^z=+1/2$. The two AdS solutions $\psi_+(\zeta)$ and $\psi_-(\zeta)$ correspond to nucleons with $J^z=+1/2$ and -1/2.
- For SU(6) spin-flavor symmetry

$$F_1^p(Q^2) = \int d\zeta J(Q,\zeta) |\psi_+(\zeta)|^2,$$

$$F_1^n(Q^2) = -\frac{1}{3} \int d\zeta J(Q,\zeta) \left[|\psi_+(\zeta)|^2 - |\psi_-(\zeta)|^2 \right],$$

where $F_1^p(0) = 1$, $F_1^n(0) = 0$.

Compute Dirac proton form factor using SU(6) flavor symmetry

$$F_1^p(Q^2) = R^4 \int \frac{dz}{z^4} V(Q, z) \Psi_+^2(z)$$

Nucleon AdS wave function

$$\Psi_{+}(z) = \frac{\kappa^{2+L}}{R^2} \sqrt{\frac{2n!}{(n+L)!}} z^{7/2+L} L_n^{L+1} \left(\kappa^2 z^2\right) e^{-\kappa^2 z^2/2}$$

• Normalization $(F_1^p(0) = 1, V(Q = 0, z) = 1)$

$$R^4 \int \frac{dz}{z^4} \, \Psi_+^2(z) = 1$$

Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

$$V(Q,z) = \kappa^2 z^2 \int_0^1 \frac{dx}{(1-x)^2} \, x^{\frac{Q^2}{4\kappa^2}} e^{-\kappa^2 z^2 x/(1-x)}$$

Find

$$F_1^p(Q^2) = \frac{1}{\left(1 + \frac{Q^2}{\mathcal{M}_{\rho}^2}\right) \left(1 + \frac{Q^2}{\mathcal{M}_{\rho'}^2}\right)}$$

with $\mathcal{M}_{\rho_n}^{\ 2} \to 4\kappa^2(n+1/2)$

Spacelike Pauli Form Factor

From overlap of L = 1 and L = 0 LFWFs

Nucleon Transition Form Factors

$$F_{1 N \to N^*}^p(Q^2) = \frac{\sqrt{2}}{3} \frac{\frac{Q^2}{\mathcal{M}_{\rho}^2}}{\left(1 + \frac{Q^2}{\mathcal{M}_{\rho}^2}\right) \left(1 + \frac{Q^2}{\mathcal{M}_{\rho''}^2}\right) \left(1 + \frac{Q^2}{\mathcal{M}_{\rho''}^2}\right)}$$

Proton transition form factor to the first radial excited state. Data from JLab

Nucleon Transition Form Factors

- Compute spin non-flip EM transition $N(940) \to N^*(1440)$: $\Psi^{n=0,L=0}_+ \to \Psi^{n=1,L=0}_+$
- Transition form factor

$$F_{1N \to N^*}^{p}(Q^2) = R^4 \int \frac{dz}{z^4} \Psi_{+}^{n=1,L=0}(z) V(Q,z) \Psi_{+}^{n=0,L=0}(z)$$

ullet Orthonormality of Laguerre functions $\left(F_1{}^p_{N o N^*}(0) = 0, \quad V(Q=0,z) = 1\right)$

$$R^{4} \int \frac{dz}{z^{4}} \Psi_{+}^{n',L}(z) \Psi_{+}^{n,L}(z) = \delta_{n,n'}$$

Find

$$F_{1N \to N^*}^{p}(Q^2) = \frac{2\sqrt{2}}{3} \frac{\frac{Q^2}{M_P^2}}{\left(1 + \frac{Q^2}{\mathcal{M}_{\rho}^2}\right) \left(1 + \frac{Q^2}{\mathcal{M}_{\rho''}^2}\right) \left(1 + \frac{Q^2}{\mathcal{M}_{\rho''}^2}\right)}$$

with $\mathcal{M}_{\rho_n}^{\ 2} \to 4\kappa^2(n+1/2)$

de Teramond, sjb

Consistent with counting rule, twist 3

Predict hadron spectroscopy and dynamics

Excited Baryons in Holographic QCD

G. de Teramond & sjb

Sufian, de Teramond, Deur, Dosch, sjb

Flavor Dependence of Q⁶ F₂(Q²)

Sufian, de Teramond, Deur, Dosch, sjb

Superconformal Algebra

2X2 Hadronic Multiplets

Bosons, Fermions with Equal Mass!

Proton: lu[ud]> Quark + Scalar Diquark Equal Weight: L=0, L=1

Superconformal Algebra

2X2 Hadronic Multiplets

$$\phi_M(L_M = L_B + 1) \quad \psi_{B-}(L_B + 1)$$
 $\psi_{B+}(L_B) \qquad \phi_T(L_T = L_B)$

- quark-antiquark meson $(L_M = L_{B+1})$
- quark-diquark baryon (L_B)
- R_{λ}^{\dagger} $\phi_{M}, L_{B} + 1$ ψ_{B+}, L_{B}
- quark-diquark baryon (L_B+1)
- diquark-antidiquark tetraquark ($L_T = L_B$) ψ_{B-} , $L_B + 1$ ψ_{T} , L_B
- Universal Regge slopes $\lambda = \kappa^2$

Same Twist!

$$M_H^2/\lambda = \underbrace{(2n + L_H + 1) + (2n + L_H + 1)}_{kinetic} + \underbrace{(2n + L_H + 1) + (2n + L_H + 1)}_{potential} + \underbrace{(2n + L_H + 1) + (2n + L_H + 1)}_{contribution from AdS and}_{superconformal algebra} + < \sum_i \frac{m_i^2}{x_i} > 0$$

$$\chi(mesons) = -1$$

$$\chi(baryons, tetraquarks) = +1$$

Meson			Baryon			Tetraquark		
q-cont	$J^{P(C)}$	Name	q-cont	J^P	Name	q-cont	$J^{P(C)}$	Name
$\bar{q}q$	0-+	$\pi(140)$						
$\bar{q}q$	1+-	$h_1(1170)$	ud q	$(1/2)^+$	N(940)	$[ud][\bar{u}\bar{d}]$	0_{++}	$\sigma(500)$
$\bar{q}q$	2^{-+}	$\pi_2(1670), \ \eta_2(1645)$	[ud]q	$(3/2)^{-}$	$N_{\frac{3}{2}}$ (1520)	$[ud][\bar{u}\bar{d}]$	1-+	
$\bar{q}q$	1	$\rho(770), \ \omega(780)$						
$\bar{q}q$	2^{++}	$a_2(1320), f_2(1270)$	(qq)q	$(3/2)^+$	$\Delta(1232)$	$(qq)[\bar{u}\bar{d}]$	1++	$a_1(1260)$
							1+-	$b_1(1235)$
$\bar{q}q$	3	$\rho_3(1690), \ \omega_3(1670)$	(qq)q	$(3/2)^{-}$	$\Delta_{\frac{3}{2}}$ (1700)	$(qq)[\bar{u}\bar{d}]$	2	
ar q q	4++	$a_4(2040), f_4(2050)$	(qq)q	$(7/2)^+$	$\Delta_{\frac{7}{2}}^{2}$ (1950)	$(qq)[\bar{u}\bar{d}]$	3++	
$\bar{q}s$	0-	$\bar{K}(495)$						
$\bar{q}s$	1+	$\bar{K}_1(1270)$	ud s	$(1/2)^+$	$\Lambda(1115)$	$[ud][\bar{s}\bar{q}]$	0+	$K_0^*(1430)$
$\bar{q}s$	2-	$K_2(1770)$	[ud]s	$(3/2)^{-}$	$\Lambda(1520)$	$[ud][\bar{s}\bar{q}]$	1-	
$\bar{s}q$	0_	K(495)						
$\bar{s}q$	1+	$K_1(1270)$	[sq]q	$(1/2)^+$	$\Sigma(1190)$	$[sq][\bar{s}\bar{q}]$	0_{++}	$a_0(980)$
								$f_0(980)$
$\bar{s}q$	1-	$K^*(890)$						
$\bar{s}q$	2^{+}	$K_2^*(1430)$	(sq)q	$(3/2)^+$	$\Sigma(1385)$	$(sq)[\bar{u}\bar{d}]$	1+	$K_1(1400)$
$\bar{s}q$	3-	$K_3^*(1780)$	(sq)q	$(3/2)^{-}$	$\Sigma(1670)$	$(sq)[\bar{u}\bar{d}]$	2^{-}	_
$\bar{s}q$	4+	$K_4^*(2045)$	(sq)q	$(7/2)^+$	$\Sigma(2030)$	$(sq)[\bar{u}\bar{d}]$	3+	—
$\bar{s}s$	0_{-+}	$\eta(550), \ \eta'(958)$						_
$\bar{s}s$	1+-	$h_1(1380)$	[sq]s	$(1/2)^+$	$\Xi(1320)$	$[sq][\bar{s}\bar{q}]$	0_{++}	$f_0(1370)$
								$a_0(1450)$
$\bar{s}s$	2-+	$\eta_2(1870)$	[sq]s	$(3/2)^{-}$	$\Xi(1620)$	$[sq][\bar{s}\bar{q}]$	1-+	
$\bar{s}s$	1	$\Phi(1020)$						
$\bar{s}s$	2^{++}	$f_2'(1525)$	(sq)s	$(3/2)^+$	$\Xi^*(1530)$	$(sq)[\bar{s}\bar{q}]$	1++	$f_1(1420)$
				,	,			$a_1(1420)$
$\bar{s}s$	3	$\Phi_3(1850)$	(sq)s	$(3/2)^{-}$	$\Xi(1820)$	$(sq)[\bar{s}\bar{q}]$	2	
$\bar{s}s$	2++	$f_2(1640)$	(ss)s	$(3/2)^+$	$\Omega(1672)$	$(ss)[\bar{s}\bar{q}]$	1+	$K_1(1650)$

New Organization of the Hadron Spectrum M. Nielsen

Supersymmetry across the light and heavy-light spectrum

Supersymmetry across the light and heavy-light spectrum

Heavy charm quark mass does not break supersymmetry

Supersymmetry across the light and heavy-light spectrum

Heavy bottom quark mass does not break supersymmetry

New World of Tetraquarks

$$3_C \times 3_C = \overline{3}_C + 6_C$$

Bound!

- Diquark: Color-Confined Constituents: Color 3_C
- Diquark-Antidiquark bound states $\bar{3}_C \times 3_C = 1_C$

$$\sigma(TN) \simeq 2\sigma(pN) - \sigma(\pi N)$$

$$2\big[\sigma([\{qq\}N) + \sigma(qN)] - [\sigma(qN) + \sigma(\bar{q}N)] = [\sigma(\{qq\}N) + \sigma(\{qq\}N)]$$

Candidates $f_0(980)I = 0, J^P = 0^+$, partner of proton

$$a_1(1260)I = 0, J^P = 1^+, \text{ partner of } \Delta(1233)$$

Test twist=4, power-law fall-off of form factors

$$= 2p^{+}F(q^{2})$$

Front Form

Drell & Yan, West **Exact LF formula!**

Drell, sjb

Exact LF Formula for Pauli Form Factor

$$\frac{F_{2}(q^{2})}{2M} = \sum_{a} \int [\mathrm{d}x][\mathrm{d}^{2}\mathbf{k}_{\perp}] \sum_{j} e_{j} \frac{1}{2} \times \mathbf{Drell}, \mathbf{sjb}$$

$$\left[-\frac{1}{q^{L}} \psi_{a}^{\uparrow *}(x_{i}, \mathbf{k}'_{\perp i}, \lambda_{i}) \psi_{a}^{\downarrow}(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}) + \frac{1}{q^{R}} \psi_{a}^{\downarrow *}(x_{i}, \mathbf{k}'_{\perp i}, \lambda_{i}) \psi_{a}^{\uparrow}(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}) \right]$$

$$\mathbf{k}'_{\perp i} = \mathbf{k}_{\perp i} - x_{i}\mathbf{q}_{\perp} \qquad \mathbf{k}'_{\perp j} = \mathbf{k}_{\perp j} + (1 - x_{j})\mathbf{q}_{\perp}$$

Must have $\Delta \ell_z = \pm 1$ to have nonzero $F_2(q^2)$

Nonzero Proton Anomalous Moment --> Nonzero orbital quark angular momentum

Leading Twist Sivers Effect

Hwang, Schmidt, sjb

Collins, Burkardt, Ji, Yuan. Pasquini, ...

QCD S- and P-Coulomb Phases --Wilson Line

"Lensing Effect"

Leading-Twist Rescattering Violates pQCD Factorization!

Sign reversal in DY!

Underlying Principles

- Poincarè Invariance: Independent of the observer's Lorentz frame
- Quantization at Fixed Light-Front Time $\, au$
- Causality: Information within causal horizon
- Light-Front Holography: $AdS_5 = LF(3+1)$

$$z \leftrightarrow \zeta$$
 where $\zeta^2 = b_{\perp}^2 x (1 - x)$

- $\zeta^2 = x(1-x)b_{\perp}^2$
- Single fundamental hadronic mass scale K: but retains the Conformal Invariance of the Action (dAFF)!
- Unique color-confining LF Potential! $U(\zeta^2) = \kappa^4 \zeta^2$
- Superconformal Algebra: Mass Degenerate 4-Plet:

Meson $q\bar{q} \leftrightarrow \text{Baryon } q[qq] \leftrightarrow \text{Tetraquark } [qq][\bar{q}\bar{q}]$

HEP2018 7th International Conference on High Energy Physics in the LHC Era Universidad Técnica Federico Santa María, Valparaiso, Chile 1-11-2018

Supersymmetric Features of QCD from LF Holography

Running Coupling from Modified AdS/QCD

Deur, de Teramond, sjb

ullet Consider five-dim gauge fields propagating in AdS $_5$ space in dilaton background $arphi(z)=\kappa^2z^2$

$$e^{\phi(z)} = e^{+\kappa^2 z^2}$$
 $S = -\frac{1}{4} \int d^4x \, dz \, \sqrt{g} \, e^{\varphi(z)} \, \frac{1}{g_5^2} \, G^2$

Flow equation

$$\frac{1}{g_5^2(z)} = e^{\varphi(z)} \frac{1}{g_5^2(0)}$$
 or $g_5^2(z) = e^{-\kappa^2 z^2} g_5^2(0)$

where the coupling $g_5(z)$ incorporates the non-conformal dynamics of confinement

- YM coupling $\alpha_s(\zeta) = g_{YM}^2(\zeta)/4\pi$ is the five dim coupling up to a factor: $g_5(z) \to g_{YM}(\zeta)$
- Coupling measured at momentum scale Q

$$\alpha_s^{AdS}(Q) \sim \int_0^\infty \zeta d\zeta J_0(\zeta Q) \,\alpha_s^{AdS}(\zeta)$$

Solution

$$\alpha_s^{AdS}(Q^2) = \alpha_s^{AdS}(0) e^{-Q^2/4\kappa^2}.$$

 $\alpha_s^{AdS}(Q^2)=\alpha_s^{AdS}(0)\,e^{-Q^2/4\kappa^2}.$ where the coupling α_s^{AdS} incorporates the non-conformal dynamics of confinement

Bjorken sum rule defines effective charge $\alpha_{q1}(Q^2)$

$$\alpha_{g1}(Q^2)$$

$$\int_0^1 dx [g_1^{ep}(x, Q^2) - g_1^{en}(x, Q^2)] \equiv \frac{g_a}{6} [1 - \frac{\alpha_{g1}(Q^2)}{\pi}]$$

- Can be used as standard QCD coupling
- Well measured
- Asymptotic freedom at large Q²
- Computable at large Q² in any pQCD scheme
- Universal β₀, β₁

Analytic, defined at all scales, IR Fixed Point

 $AdS/QCD\ dilaton\ captures\ the\ higher\ twist\ corrections\ to\ effective\ charges\ for\ Q<\imath\ GeV$

$$e^{\varphi} = e^{+\kappa^2 z^2}$$

Deur, de Teramond, sjb

$$\Lambda_{\overline{MS}} = 0.5983 \kappa = 0.5983 \frac{m_{\rho}}{\sqrt{2}} = 0.4231 m_{\rho} = 0.328 \text{ GeV}$$

Process-independent strong running coupling

Daniele Binosi,¹ Cédric Mezrag,² Joannis Papavassiliou,³ Craig D. Roberts,² and Jose Rodríguez-Quintero⁴

de Tèramond, Dosch, sjb

AdS/QCD Soft-Wall Model

$$e^{\varphi(z)} = e^{+\kappa^2 z^2}$$

$$\zeta^2 = x(1-x)\mathbf{b}_{\perp}^2$$

Light-Front Holography

$$\left[-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + U(\zeta) \right] \psi(\zeta) = M^2 \psi(\zeta)$$

Light-Front Schrödinger Equation

$$U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1)$$

Single variable \(\ze{\chi} \)

Confinement scale:

 $\kappa \simeq 0.5 \; GeV$

Unique Confinement Potential!

Conformal Symmetry of the action

Scale can appear in Hamiltonian and EQM

de Alfaro, Fubini, Furlan: without affecting conformal invariance of action!

• Fubini, Rabinovici

Connection to the Linear Instant-Form Potential

Linear instant nonrelativistic form V(r) = Cr for heavy quarks

Harmonic Oscillator $U(\zeta) = \kappa^4 \zeta^2$ LF Potential for relativistic light quarks

A.P. Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

Dressed soft-wall current brings in higher Fock states and more vector meson poles

Pion Form Factor from AdS/QCD and Light-Front Holography

Superconformal Algebra

2X2 Hadronic Multiplets

Bosons, Fermions with Equal Mass!

Proton: lu[ud]> Quark + Scalar Diquark Equal Weight: L=0, L=1

Invariance Principles of Quantum Field Theory

- Polncarè Invariance: Physical predictions must be independent of the observer's Lorentz frame: Front Form
- Causality: Information within causal horizon: Front Form
- Gauge Invariance: Physical predictions of gauge theories must be independent of the choice of gauge
- Scheme-Independence: Physical predictions of renormalizable theories must be independent of the choice of the renormalization scheme — Principle of Maximum Conformality (PMC)
- Mass-Scale Invariance:
 Conformal Invariance of the Action (DAFF)

HEP2018
7th International Conference on
High Energy Physics in the LHC Era
Universidad Técnica Federico Santa María,
Valparaiso, Chile 1-11-2018

Supersymmetric Features of QCD from LF Holography

Supersymmetric Features of Hadron Physics and Properties of Quantum Chromodynamics from Light-Front Holography and Superconformal Algebra

Universidad Técnica Federico Santa María, Valparaiso, Chile January 8-12, 2018

Stan Brodsky

with Guy de Tèramond, Hans Günter Dosch, C. Lorcè, M. Nielsen, K. Chiu, R. S. Sufian, A. Deur