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contributions in different angular-momentum configura-
tions from the broad and overlapping resonances. Thus,
there is now the chance to clarify the “missing” resonance
problem. The attempt to assign (nearly) all baryon reso-
nances to SU(3) multiplets should be helpful to identify
problems and to serve as guidance for further discussions.
This assignment requires to identify the leading orbital
angular momenta L and the spin S within the three-
quark system. Measured quantities are only the total an-
gular momentum, the spin J of the baryon, and its mass.
Here, theoretical input is required. We use a holographic
mass formula derived in [11] which reproduces the known
spectrum of nucleon and ∆ resonances with remarkable
precision.

In this paper, we shall use the word missing resonance
in a restricted sense. E.g., we may interpret the three
resonances N3/2+(1900), N5/2+(2000), N7/2+(1990) [12]
as members of a spin quartet, with orbital angular mo-
menta L = 2 and quark spin S = 3/2 coupling to the ob-
served particle spin J . In this interpretation, N1/2+(1880)
—observed in recent coupled-channel analyses [13]— was
missing to complete a quark spin quartet [14]. But the
existence of a N1/2+ resonance would be required in any
kind of quark model. More subtle is the question if two ad-
ditional doublets (N3/2+ , N5/2+) and (∆3/2+ , ∆5/2+) as
requested by symmetry arguments (see eq. (9) below) are
realized in nature. None of these states has been observed.
The latter type of resonances, i.e. the non-observation of a
complete L, S multiplet, we shall call missing resonances
in the context of this paper.

We refrain here from a discussion of the possibility that
baryon resonances are formed as parity doublets. If this
conjecture holds true, it gives an exciting new approach to
the internal dynamics of excited hadronic states; we give
here a few references for further reading [15–18]. However,
the predictive power of the conjecture is limited: it pre-
dicts that resonances should occur as parity doublets but
there is no prediction at which mass. In this article we
hence restrict ourselves to a discussion of the data within
the quark model and its symmetries.

The outline of the paper is as follows: In sects. 2 and 3
we summarise the empirical data on light-flavoured delta
and nucleon resonances, respectively. In particular we re-
call that these can be suitable organised according to lead-
ing and daughter Regge trajectories where the resonance
positions follow from a simple mass formula. In sect. 4
we summarise the relevant symmetries for light-flavoured
baryons and the classification of states in multiplets within
the framework of the (harmonic oscillator) constituent
quark model. In sect. 5 we discuss the structure of the
nucleon and ∆ resonances within the framework of this
classification, before concluding in sect. 6.

2 The mass spectrum of ∆ resonances

2.1 Regge trajectories

It is well known that meson and baryon resonances lie on
Regge trajectories, i.e. that their squared masses depend
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Fig. 1. The leading Regge trajectory: ∆ resonances with maxi-
mal J in a given mass range. Also shown is the Regge trajectory
for mesons with J = L + S.

linearly on the total angular momentum J . Figure 1 shows
such a plot; ∆ resonances are plotted having the largest
total angular momentum J in a given mass range. This
trajectory is called the leading Regge trajectory. The reso-
nances are consistent with having even orbital angular mo-
mentum L = 0, 2, 4, 6 and quark spin S = 3/2 maximally
aligned to form total angular momentum J = L+3/2. The
errors in the fit are given by the PDG errors and a second
systematic error of 30MeV added quadratically. This sys-
tematic error is introduced to avoid hard constraints from
well measured meson or baryon masses like the ∆(1232)
mass; the error can be interpreted as uncertainty due to
variations of the self-energy of different hadrons due to,
e.g., the proximity of (strong) decay thresholds.

Figure 1 also shows the leading Regge trajectory of
natural-parity mesons, again as a function of the total an-
gular momentum. Light mesons with approximate isospin
degeneracy and with J = L+1 are presented. Although it
is customary to plot the meson trajectories for L even and
L odd (for positive- and negative-parity mesons, respec-
tively) separately, there is no problem fitting both trajec-
tories simultaneously: This property is called MacDowell
symmetry [19].

The dotted line represents such a common fit to the
meson masses taken from the PDG [12]; the error in the fit
is given by the PDG errors and a second systematic error
of 30MeV added quadratically. The slope is determined
as 1.142GeV2. The ∆ trajectory is given by the ∆(1232)
mass and the slope as determined from the meson tra-
jectory. Obviously, mesons and ∆’s have the same Regge
slope. This observation is the basis for diquark models;
indeed, the QCD forces between quark and antiquark are
the same as those between quark and diquark.

The leading Regge trajectory:  Δ resonances with maximal J in a given mass range. 
Also shown is the Regge trajectory for mesons with J = L+S.
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Superconformal Algebra
2X2 Hadronic Multiplets: 4-Plet
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Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, JP = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m2 =
Pn

i=1
m2

i

x
i

to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e�
1
2��m2

, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.
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Proton: |u[ud]> Quark + Scalar Diquark
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3̄C ! 3̄C

Guy de Tèramond,  Hans Günter Dosch, sjb



Meson Baryon Tetraquark
q-cont JP (C) Name q-cont JP Name q-cont JP (C) Name

q̄q 0−+ π(140) — — — — — —

q̄q 1+− h1(1170) [ud]q (1/2)+ N(940) [ud][ūd̄] 0++ σ(500)
q̄q 2−+ π2(1670), η2(1645) [ud]q (3/2)− N 3

2

−(1520) [ud][ūd̄] 1−+ —

q̄q 1−− ρ(770), ω(780) — — — — — —

q̄q 2++ a2(1320), f2(1270) (qq)q (3/2)+ ∆(1232) (qq)[ūd̄] 1++ a1(1260)
1+− b1(1235)

q̄q 3−− ρ3(1690), ω3(1670) (qq)q (3/2)− ∆ 3
2

−(1700) (qq)[ūd̄] 2−− —

q̄q 4++ a4(2040), f4(2050) (qq)q (7/2)+ ∆ 7
2

+(1950) (qq)[ūd̄] 3++ —

q̄s 0− K̄(495) — — — — — —

q̄s 1+ K̄1(1270) [ud]s (1/2)+ Λ(1115) [ud][s̄q̄] 0+ K∗
0(1430)

q̄s 2− K2(1770) [ud]s (3/2)− Λ(1520) [ud][s̄q̄] 1− —

s̄q 0− K(495) — — — — — —

s̄q 1+ K1(1270) [sq]q (1/2)+ Σ(1190) [sq][s̄q̄] 0++ a0(980)
f0(980)

s̄q 1− K∗(890) — — — — — —

s̄q 2+ K∗
2(1430) (sq)q (3/2)+ Σ(1385) (sq)[ūd̄] 1+ K1(1400)

s̄q 3− K∗
3(1780) (sq)q (3/2)− Σ(1670) (sq)[ūd̄] 2− —

s̄q 4+ K∗
4(2045) (sq)q (7/2)+ Σ(2030) (sq)[ūd̄] 3+ —

s̄s 0−+ η(550), η′(958) — — — — — —

s̄s 1+− h1(1380) [sq]s (1/2)+ Ξ(1320) [sq][s̄q̄] 0++ f0(1370)
a0(1450)

s̄s 2−+ η2(1870) [sq]s (3/2)− Ξ(1620) [sq][s̄q̄] 1−+ —

s̄s 1−− Φ(1020) — — — — — —
s̄s 2++ f ′

2(1525) (sq)s (3/2)+ Ξ∗(1530) (sq)[s̄q̄] 1++ f1(1420)

a1(1420)
s̄s 3−− Φ3(1850) (sq)s (3/2)− Ξ(1820) (sq)[s̄q̄] 2−− —

s̄s 2++ f2(1640) (ss)s (3/2)+ Ω(1672) (ss)[s̄q̄] 1+ K1(1650)

Table 4: Quantum numbers of the states and constituent clusters of different meson families
(with only light quarks: q = u, d and s) and their supersymmetric baryon and tetraquark
partners. Each family is separated by a horizontal line. For a qq̄ state P = −(−1)LM , C =
(−1)LM+SM . For the baryons multiplets with same LB and SD we show only the state with
the highest possible value for J . Diquarks represented by [ ] have total spin SD = 0, and the
ones represented by ( ) have SD = 1.
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Need a First Approximation to QCD 

 Comparable in simplicity to 
Schrödinger Theory in Atomic Physics

Relativistic, Frame-Independent, Color-Confining 

Origin of hadronic mass scale

AdS/QCD 
Light-Front Holography  
Superconformal Algebra

     No parameters except for quark masses 
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HQCD
LF |ψ >=M2|ψ >

Dirac’s Front Form: Fixed τ = t+ z/c

Bound States in Relativistic Quantum Field Theory: 

Light-Front Wavefunctions

Remarkable new insights from AdS/CFT, the duality 
between conformal field theory  and Anti-de Sitter Space 

Invariant under boosts.   Independent of Pμ

Direct connection to QCD Lagrangian
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Advantages of the Dirac’s Front Form for Hadron Physics

• Measurements are made at fixed τ 

• Causality is automatic 

• Structure Functions are squares of LFWFs 

• Form Factors are overlap of LFWFs 

• LFWFs are frame-independent: no boosts, no pancakes! 

• Same structure function measured at an e p collider and the 
proton rest frame 

• No dependence of hadron structure on observer’s frame 

• LF Holography: Dual to AdS space 

• LF Vacuum trivial -- no vacuum condensates! 

• Profound implications for Cosmological Constant

Physics Independent of Observer’s Motion

Poincare’ Invariant

Roberts, Shrock, Tandy, sjb

Penrose, Terrell, Weisskopf



• “History” : Compute any subgraph only once since the LFPth 
numerator does not depend on the process — only the 
denominator changes!

• Wick Theorem applies, but few amplitudes since all k+ > 0.

• Jz Conservation at every vertex

• Unitarity is explicit

• Loop Integrals are 3-dimensional

• hadronization: coalesce comoving quarks and gluons to 
hadrons using light-front wavefunctions

Light-Front Perturbation Theory for pQCD
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Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

Conformal Symmetry 
of the action  
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Confinement scale:   

Light-Front Schrödinger Equation Unique 
Confinement Potential!

de Tèramond, Dosch, sjb

 ' 0.5 GeV

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!• Fubini, Rabinovici: 

e'(z) = e+2z2

Single variable  ζ

⇥
� d2

d⇣2 � 1�4L2

4⇣2 + U(⇣)
⇤
 (⇣) = M2 (⇣)

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2



AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(�µ⇥dxµdx⇥ � dz2),

xµ ⇤ ⇥xµ, z ⇤ ⇥z, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 ⇤ ⇥2x2, z ⇤ ⇥z.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z ⇤ 0 correspond to theQ⇤⌅, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 11

invariant measure

AdS/CFT

AdS5
Exploring QCD, Cambridge, August 20-24, 2007 Page 9



7th International Conference on High Energy Physics in the LHC Era7th International Conference on High Energy Physics in the LHC Era

Supersymmetric Features of QCD 
from LF Holography         

HEP2018
7th International Conference on 

High Energy Physics in the LHC Era 
Universidad Técnica Federico Santa María, 

Valparaiso, Chile  1-11-2018

 Stan Brodsky

•Soft-wall dilaton profile breaks 
conformal invariance

•Color Confinement in z

•Introduces confinement scale κ

•Uses AdS5 as template for conformal 
theory

e'(z) = e+2z2

Dilaton-Modified AdS/QCD

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

https://indico.cern.ch/event/628450/
https://indico.cern.ch/event/628450/


AdS Soft-Wall Schrödinger Equation for  
bound state  of  two scalar constituents:

Derived from variation of Action for Dilaton-Modified AdS5 

Identical to Single-Variable Light-Front Bound State Equation in ζ! 

U(z) = �4z2 + 2�2(L + S � 1)

• de Teramond, sjbPositive-sign dilaton

⇥
� d2

dz2
� 1� 4L2

4z2
+ U(z)

⇤
�(z) =M2�(z)

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

e'(z) = e+2z2



⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

LF(3+1)                AdS5

Light-Front Holography: Unique mapping derived from equality of LF 
and AdS  formula for EM and gravitational current matrix elements 

and identical equations of motion

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb

(µR)2 = L2 � (J � 2)2

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Light-Front Holographic Dictionary



G. de Teramond, H. G. Dosch, sjb 

U(⇣2) = 4⇣2 + 22(J � 1)

z ! ⇣

Pion: Negative term  for J=0 cancels 
positive terms from LFKE and potentialm⇡ = 0 if mq = 0

Massless pion! 

~

⇣

2 = ~

b

2
?x(1� x)



Same slope in n and L!Massless pion in Chiral Limit!

Mass ratio of the ρ and the a1 mesons: coincides with Weinberg sum rules

mq = 0

G. de Teramond, H. G. Dosch, sjb 



Uniqueness of Dilaton

pion is massless in chiral limit iff 
p=2!

p

m2
⇡/2

'p(z) = pzp

e'(z) = e+2z2

• Dosch, de Tèramond, sjb
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Fig: Orbital and radial AdS modes in the soft wall model for � = 0.6 GeV .
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Light meson orbital (a) and radial (b) spectrum for � = 0.6 GeV.

Exploring QCD, Cambridge, August 20-24, 2007 Page 26

S = 0 S = 0

Soft Wall 
Model

Pion mass  
automatically zero!

mq = 0

Quark separation 
increases with L

Pion has 
zero mass!

Same slope in n and L!
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Figure 1: Comparison of the light-front holographic prediction [1] M2(n, L, S) =
4�(n+ L+ S/2) for the orbital L and radial n excitations of the meson spectrum with
experiment. See Ref. [2]

1 Introduction

A remarkable empirical feature of the hadronic spectrum is the near equality of the

slopes of meson and baryon Regge trajectories. The square of the masses of hadrons

composed of light quarks is linearly proportional not only to L, the orbital angular

momentum, but also to the principal quantum number n, the number of radial nodes in

the hadronic wavefunction as seen in Fig. 1. The Regge slopes in n and L are equal, as in

the meson formula M2
M(n, L, S) = 4�(n+L+S/2 from light front holographic QCD [1],

but even more surprising, they are observed to be equal for both the meson and baryon

trajectories, as shown in Fig. 2. The mean value for all of the slopes is  =
p
� = 0.523

GeV. See Fig. 3.

4

Equal Slope in n and LM2(n,L, S) = 42(n + L + S/2)



Structure of the Vacuum in Light-Front Dynamics

• Results easily extended to light quarks masses (Ex: K-mesons)
[GdT, S. J. Brodsky and H. G.Dosch, arXiv:1405.2451 [hep-ph]]

• First order perturbation in the quark masses

�M2
= h |

X

a

m2
a

/x
a

| i

• Holographic LFWF with quark masses
[S. J. Brodsky and GdT, arXiv:0802.0514 [hep-ph]

 (x, ⇣) ⇠
p

x(1� x) e�
1
2�

�

m

2
q

x

+
m

2
q

1�x

�

e�
1
2� ⇣

2

• Ex: Description of diffractive vector meson production at HERA
[J. R. Forshaw and R. Sandapen, PRL 109, 081601 (2012)]

• For the K⇤

M2
n,L,S

= M2
K

± + 4�

✓

n +

J + L

2

◆

• Effective quark masses from reduction of higher Fock states as functionals of the valence state:

m
u

= m
d

= 46 MeV, m
s

= 357 MeV

Niccolò Cabeo 2014, Ferrara, May 20, 2012
Page 33

De Tèramond, Dosch, sjb

from LF Higgs mechanism

Effective mass from m(p2) Tandy, Roberts, et al



Prediction from AdS/QCD: Meson LFWF

�(x, k�)
0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

�(x, k�)(GeV)

de Teramond, 
Cao, sjb⇥M(x, Q0) ⇥

�
x(1� x)

⇤M(x, k2
⇤)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

massless quarks

Note coupling  

k2
�, x

Provides Connection of Confinement to Hadron Structure

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

x

1� x

�⇡(x) =
4p
3⇡

f⇡

p
x(1� x)

f⇡ =
p

Pqq̄

p
3

8
 = 92.4 MeV Same as DSE!

e'(z) = e+2z

C. D. Roberts et al.



General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

0.20.40.60.8
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1.5

0

0.05

0.1

0.15

0.2

0

5

�(x, k�)(GeV)

�(x, k�)

• Light Front Wavefunctions:                                   

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

“Hadronization at the Amplitude Level”

o↵-shell in P� and invariant massM2
qq̄

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

Boost-invariant LFWF connects confined quarks and gluons to hadrons

x,

~

k?

1� x,�~

k?



J. R. Forshaw,  
R. Sandapen

�⇤p! ⇢0p0

�L

�T

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)



Start DGLAP evolution at transition 
scale Q2 = Q20 = 0.75 GeV2

q⇡(x,Q
2
< Q

2
0) =

Z
d

2
~

k?| ⇡(x,~k?)|2

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

x

Q2 = 0.75 GeV 2

Q2 = 27 GeV 2

Q2 = 27 GeV 2

T. Liu,                
G. de Tèramond,  

G. Dosch,  A. Deur,      
R.S. Sufian, sjb 

(preliminary)

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

q⇡(x,Q
2
< Q

2
0) =

Z
d

2
~

k?| ⇡(x,~k?)|2

Start DGLAP evolution at transition scale Q20

“No parameters”

 NLO DGLAP

Q2 = Q2
0 = 0.75GeV 2



QCD Lagrangian

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]

Classical Chiral Lagrangian is Conformally Invariant  

Where does the QCD Mass Scale come from?  

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!

Unique confinement potential!

QCD does not know what MeV units mean! 
Only Ratios of Masses Determined



G = uH + vD + wK

G| (⌧) >= i
@

@⌧
| (⌧) >

G = H⌧ =
1
2
�
� d2

dx2
+

g

x2
+

4uw � v2

4
x2

�

Retains conformal invariance of action despite mass scale! 

Identical to LF Hamiltonian with unique potential and dilaton! 

• de Alfaro, Fubini, Furlan

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

U(⇣) = 4⇣2 + 22(L + S � 1)

4uw � v2 = 4 = [M ]4

• Dosch, de Teramond, sjb

New term

(dAFF)



fixed uniquely: it is, like the original Hamiltonian with unbroken dilatation symmetry,179

a constant of motion (2). This procedure breaks scale invariance by a redefinition of180

the fields and the time parameter (16). The Lagrangian, expressed in terms of the181

original fields Q(t) is unchanged up to a total derivative (2). The dAFF mechanism182

is reminiscent of spontaneous symmetry breaking, however, this is not the case since183

there are no degenerate vacua (14) and thus a massless scalar 0++ state is not required.184

The dAFF mechanism is also di↵erent from usual explicit breaking by just adding a185

term to the Lagrangian (15).186

In their discussion of the evolution operator H⌧ dAFF mention a critical point,187

namely that “the time evolution is quite di↵erent from a stationary one”. By this188

statement they refer to the fact that the variable ⌧ is related to the variable t by189

⌧ =
2p

4uw � v2
arctan

✓
2tw + vp
4uw � v2

◆
, (22)

i.e., ⌧ has only a finite range. Since q2(⌧) vanishes at the borders of this range (See190

(16)), the surface term in (18) vanishes also there. In our approach ⌧ = x+/P+
191

can be interpreted as the LF time di↵erence of the confined q and q̄ in the hadron,192

a quantity which is naturally of finite range and in principle could be measured in193

double-parton scattering processes. It is also interesting to notice that the conformal194

group in one dimension with generators Ht, K and D is locally isomorphic to the195

group SO(2, 1) and thus, a correspondence can be established between the SO(2, 1)196

group of conformal quantum mechanics and the AdS2 space with isometry group197

SO(2, 1) (16).198

Following the work of de Alfaro, Fubini and Furlan in Ref. (2), we have discussed199

in this letter an e↵ective theory which encodes the fundamental conformal symmetry200

of the QCD Lagrangian in the limit of massless quarks. It is an explicit model in201

which the confinement length scale appears in the light-front Hamiltonian from the202

breaking of dilatation invariance, without a↵ecting the conformal invariance of the203

action. In the context of the dual holographic model it shows that the form of the204

dilaton profile is unique, which leads by the mapping to the light-front Hamiltonian205

9

dAFF: New Time Variable

• Identify with difference of LF time Δx+/P+ 

between constituents 

• Finite range  

• Measure in Double-Parton Processes

Retains conformal invariance of action despite mass scale! 



{Q,S+} = f �B + 2iD, {Q+, S} = f �B � 2iD

B =
1
2
[ +, ] =

1
2
�3{ , +} = 1

 =
1
2
(�1 � i�2),  + =

1
2
(�1 + i�2)

{Q,Q+} = 2H, {S, S+} = 2K

generates conformal algebra

[H,D]= i H, [H, K] =2 i D, [K, D] = - i K

Q =  

+[�@
x

+
f

x

], Q

+ =  [@
x

+
f

x

],
S =  

+
x, S

+ =  x

Haag, Lopuszanski, Sohnius (1974)

Superconformal Quantum Mechanics 

Q '
p

H, S '
p

K



Consider Rw = Q + wS;

w: dimensions of mass squared

Superconformal Quantum Mechanics 

Retains Conformal Invariance of Action

G11 =
�
� @

2
x

+ w

2
x

2 + 2wf � w +
4(f + 1

2 )2 � 1
4x

2

�

New Extended Hamiltonian  G is diagonal:

G = {Rw, R+
w} = 2H + 2w2K + 2wfI � 2wB

G22 =
�
� @

2
x

+ w

2
x

2 + 2wf + w +
4(f � 1

2 )2 � 1
4x

2

�

Fubini and Rabinovici 

2B = �3

Eigenvalue of G: M2
(n,L) = 42

(n + LB + 1)

Baryon Equation

Identify f � 1
2 = LB , w = 2

Q '
p

H, S '
p

K



�
� @2

⇣ + 4⇣2 + 22(LB + 1) +
4L2

B � 1
4⇣2

�
 +

J = M2 +
J

Baryon Equation

Meson Equation

M2(n,LB) = 42(n + LB + 1)

�
� @2

⇣ + 4⇣2 + 22LB +
4(LB + 1)2 � 1

4⇣2

�
 �J = M2 �J

�
� @2

⇣ + 4⇣2 + 22(J � 1) +
4L2

M � 1
4⇣2

�
�J = M2�J

M2(n,LM ) = 42(n + LM )

Meson-Baryon Degeneracy for LM=LB+1

S=1/2, P=+

LF Holography

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

Superconformal  
Quantum Mechanics 

Same   !
S=0, P=+
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Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7

42S=1/2, P=+ S=1/2, P=+

S=3/2, P=-

S=1/2, P=- S=1/2, 3/2
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for LM=LB+1

Same slope

M2(n,LB) = 42(n + LB + 1)

M2(n,LM ) = 42(n + LM )

M2
meson

M2
nucleon

=
n + L

M

n + L
B

+ 1

de Tèramond, Dosch, Lorce, sjbSuperconformal Quantum Mechanics 
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

Fit to the slope of Regge trajectories, 
including radial excitations

Same Regge Slope for Meson, Baryons:  
Supersymmetric feature of hadron physics

Dosch, de Teramond, Lorce, sjb

mu = md = 46 MeV, ms = 357 MeV
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Solid line:  κ = 0.53 GeV

Superconformal meson-nucleon partners
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Universal Hadronic Features

• Universal quark light-front kinetic energy 

• Universal quark light-front potential energy 

• Universal Constant Term

�M2
LFKE = 2(1 + 2n + L)

�M2
LFPE = 2(1 + 2n + L)

M2 = �M2
LFKE + �M2

LFPE + �M2
spin

M2
spin = 22(S + L� 1 + 2ndiquark )

Equal: 
Virial 

Theorem!

+ <

X

i

m

2
i

xi
>



Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

⇤+(�)n,L = ⇥2+L

⌅
2n!

(n + L)!
�3/2+Le�⇥2�2/2LL+1

n

�
⇥2�2

⇥

⇤�(�)n,L = ⇥3+L 1⇤
n + L + 2

⌅
2n!

(n + L)!
�5/2+Le�⇥2�2/2LL+2

n

�
⇥2�2

⇥

• Normalization ⇤
d� ⇤2

+(�) =
⇤

d� ⇤2
�(�) = 1

• Eigenvalues

M2
n,L,S=1/2 = 4⇥2 (n + L + 1)

• “Chiral partners”
MN(1535)

MN(940)
=
⇤

2

LC 2011 2011, Dallas, May 23, 2011 Page 13

Quark Chiral 
Symmetry of 
Eigenstate!

Nucleon: Equal Probability for L=0,1

R1
0 d⇣

R 1
0 dx 

2
+(⇣

2
, x) =

R1
0 d⇣

R 1
0 dx 

2
�(⇣

2
, x) = 1

2



Supersymmetric Features of QCD 
from LF Holography         

HEP2018
7th International Conference on 

High Energy Physics in the LHC Era 
Universidad Técnica Federico Santa María, 

Valparaiso, Chile  1-11-2018

 Stan Brodsky

Features of Supersymmetric Equations

• J =L+S baryon simultaneously satisfies both 
equations of G with L , L+1 with same mass 
eigenvalue

• Jz =  Lz + 1/2 = (Lz + 1) - 1/2

• Proton spin carried by quark Lz

• Mass-degenerate meson “superpartner” with 
LM=LB+1. “Shifted  meson-baryon Duality”

Mesons and baryons have same 

Sz = ±1/2

 !

< Jz >=
1

2
(Sz

q =
1

2
, Lz = 0) +

1

2
(Sz

q = �1

2
, Lz = 1) =< Lz >=

1

2



• Boost Invariant 

• Trivial LF vacuum! No vacuum condensate, but consistent with GMOR 

• Massless Pion 

• Hadron Eigenstates (even the pion) have LF Fock components of different Lz 

• Proton: equal probability 

• Self-Dual Massive Eigenstates: Proton is its own chiral partner. 

• Label State by minimum L as in Atomic Physics 

• Minimum L dominates at short distances                

• AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=0.

Chiral Features of Soft-Wall 
AdS/QCD Model

Sz = +1/2, Lz = 0;Sz = �1/2, Lz = +1

No mass -degenerate parity partners!

Jz = +1/2 :< Lz >= 1/2, < Sz
q >= 0



Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

F+(Q2) = g+

⇤
d� J(Q, �)|⇥+(�)|2,

F�(Q2) = g�

⇤
d� J(Q, �)|⇥�(�)|2,

where the effective charges g+ and g� are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ⇥+(�) and ⇥�(�) correspond

to nucleons with Jz = +1/2 and�1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) =

⇤
d� J(Q, �)|⇥+(�)|2,

Fn
1 (Q2) = �1

3

⇤
d� J(Q, �)

�
|⇥+(�)|2 � |⇥�(�)|2

⇥
,

where F p
1 (0) = 1, Fn

1 (0) = 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 52



• Compute Dirac proton form factor using SU(6) flavor symmetry

F p
1 (Q2) = R4

⇧
dz

z4
V (Q, z)�2

+(z)

• Nucleon AdS wave function

�+(z) =
�2+L

R2

⌃
2n!

(n + L)!
z7/2+LLL+1

n

�
�2z2

⇥
e��2z2/2

• Normalization (F1
p(0) = 1, V (Q = 0, z) = 1)

R4

⇧
dz

z4
�2

+(z) = 1

• Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

V (Q, z) = �2z2

⇧ 1

0

dx

(1� x)2
x

Q2

42 e��2z2x/(1�x)

• Find

F p
1 (Q2) =

1⇤
1 + Q2

M2
⇢

⌅⇤
1 + Q2

M2
⇢0

⌅

withM⇥
2
n ⇤ 4�2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 20



Using SU(6) flavor symmetry and normalization to static quantities
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Nucleon Transition Form Factors

F p

1

N!N

⇤(Q
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p
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Q
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Nucleon Transition Form Factors

• Compute spin non-flip EM transition N(940)⇥ N�(1440): �n=0,L=0
+ ⇥ �n=1,L=0

+

• Transition form factor

F1
p
N⇥N�(Q2) = R4

⇧
dz

z4
�n=1,L=0

+ (z)V (Q, z)�n=0,L=0
+ (z)

• Orthonormality of Laguerre functions
�
F1

p
N⇥N�(0) = 0, V (Q = 0, z) = 1

⇥

R4
⇧

dz

z4
�n⇥,L

+ (z)�n,L
+ (z) = �n,n⇥

• Find

F1
p
N⇥N�(Q2) =

2
⌅

2
3

Q2

M2
P⇤

1 + Q2

M2
�

⌅⇤
1 + Q2

M2
�⇥

⌅⇤
1 + Q2

M2

�
⇥⇥

⌅

withM�
2
n ⇥ 4⇥2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 21
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Consistent with counting rule, twist 3
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FIG. 1. Polarization measurements and predictions for the proton and neutron Dirac form factors [69,

70]. The blue line is the prediction of the proton Dirac FF from LFHQCD, Eq. (21) multiplied by Q4.

The orange and the green lines are predictions for the neutron Dirac FF, Q4Fn
1 (Q

2), from Eq. (23)

and from Eq. (25) with the phenomenological factor r = 2.08, respectively. The dotted lines are the

asymptotic predictions. The asymptotic value of the neutron FF is determined using r = 2.08.

FIG. 2. Polarization measurements and predictions for the proton and neutron Pauli form factors [69,

70]. The blue line is the proton Pauli FF, Q6F p
2 (Q

2) prediction, with �p = 0.27 in Eq. (22). The green

line is the prediction for the neutron Pauli FF, Q6Fn
2 (Q

2), with �n = 0.38 in Eq. (24) from LFHQCD.

The dotted lines are the asymptotic predictions.
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FIG. 7. LFHQCD prediction of the up and the down-quark contributions to the Pauli FF multiplied

by ��1
q Q6. The data is from Ref. [70].

Finally, it is important to recall that we have used a universal value for the confinement

scale  in deriving Eq. (9), but in fact the value of  for the nucleon wave function, which is

obtained from the nucleon slope, is slightly smaller than the value of  in the EM current which

is obtained from the rho mass [40]; it determines the slope of the vector meson trajectory of

radial excitations – the poles in the EM current. Indeed, as explained in the Appendix A, we

have used the di↵erence in the value of the scale , obtained from the average of all meson and

all baryon trajectories to evaluate the theoretical uncertainty of our holographic model. Since

the wave function determines the low energy bound state dynamics, we expect that observables

which depend on the nucleon wave function, such as radii, are more sensitive to the lower value

of , whereas at higher energies, where the amplitudes depend on the structure of the vector

meson poles, we would expect that the data is better described by the slightly higher value of

 from the rho trajectory of radial excitations. A simple analysis of the data shows that this is

indeed the case.

V. CONCLUSIONS

We have performed a complete analysis of the nucleon electromagnetic form factors in the

space-like region in the framework of light-front holographic QCD. The essential dynamical el-

21
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Superconformal Algebra
2X2 Hadronic Multiplets
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Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, JP = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m2 =
Pn

i=1
m2

i

x
i

to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e�
1
2��m2

, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.

12

Meson Baryon

TetraquarkBaryon

Bosons, Fermions with Equal Mass!

Proton: |u[ud]> Quark + Scalar Diquark
Equal Weight: L=0, L=1

R†
� q ! [q̄q̄]

3C ! 3C

R†
� q̄ ! [qq]

3̄C ! 3̄C

Guy de Tèramond,  Hans Günter Dosch, sjb



Superconformal Algebra

• quark-antiquark meson (LM = LB+1))

• quark-diquark baryon (LB)

• quark-diquark baryon (LB+1)

• diquark-antidiquark tetraquark (LT = LB)

• Universal Regge slopes

2X2 Hadronic Multiplets
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multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, JP = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m2 =
Pn

i=1
m2

i

x
i

to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e�
1
2��m2

, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.
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spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, JP = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m2 =
Pn

i=1
m2

i

x
i

to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e�
1
2��m2

, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.

12

masses strongly break the conformal symmetry [18].

The structure of the hadronic mass generation obtained from the supersymmetric

Hamiltonian GS, Eq. (17), provides a frame-independent decomposition of the quadratic

masses for all four members of the supersymmetric multiplet. In the massless quark limit:

M2
H/� =

contribution from 2-dim

light-front harmonic oscillator

z }| {
(2n+ LH + 1)| {z }

kinetic

+(2n+ LH + 1)| {z }
potential

+

contribution from AdS and

superconformal algebra

z }| {
2(LH + s) + 2� . (25)

Here n is the radial excitation number and LH the LF angular momentum of the hadron

wave function; s is the total spin of the meson and the cluster respectively, � = �1 for the

meson and for the negative-chirality component of the baryon (the upper components

in the susy-doublet) and � = +1 for the positive-chirality component of baryon and

for the tetraquark (the lower components). The contributions to the hadron masses

squared from the light-front potential �2⇣2 and the light-front kinetic energy in the LF

Hamiltonian, are identical because of the virial theorem.

We emphasize that the supersymmetric features of hadron physics derived here from

superconformal quantum mechanics refers to the symmetry properties of the bound-

state wave functions of hadrons and not to quantum fields; there is therefore no need to

introduce new supersymmetric fields or particles such as squarks or gluinos.

We have argued that tetraquarks – which are degenerate with the baryons with the

same (leading) orbital angular momentum– are required to complete the supermulti-

plets predicted by the superconformal algebra. The tetraquarks are the bound states

of the same confined color-triplet diquarks and anti-diquarks which account for baryon

spectroscopy.

The light-front cluster decomposition [32, 33] for a bound state of N constituents

–as an “active” constituent interacting with the remaining cluster of N�1 constituents–

also has implications for the holographic description of form factors. As a result, the

form factor is written as the product of a two-body form factor multiplied by the form

factor of the N � 1 cluster evaluated at its characteristic scale. The form factor of the

N�1 cluster is then expressed recursively in terms of the form factor of the N�2 cluster,

and so forth, until the overall form factor is expressed as the N � 1 product of two-body

form factors evaluated at di↵erent characteristic scales. This cluster decomposition is

in complete agreement with the QCD twist assignment which leads to counting-rule

scaling laws [34, 35]. This solves a previous problem with the twist assignment for
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+ <

X

i

m

2
i

xi
>

�(mesons) = �1

�(baryons, tetraquarks) = +1

Same Twist!



Meson Baryon Tetraquark
q-cont JP (C) Name q-cont JP Name q-cont JP (C) Name

q̄q 0−+ π(140) — — — — — —

q̄q 1+− h1(1170) [ud]q (1/2)+ N(940) [ud][ūd̄] 0++ σ(500)
q̄q 2−+ π2(1670), η2(1645) [ud]q (3/2)− N 3

2

−(1520) [ud][ūd̄] 1−+ —

q̄q 1−− ρ(770), ω(780) — — — — — —

q̄q 2++ a2(1320), f2(1270) (qq)q (3/2)+ ∆(1232) (qq)[ūd̄] 1++ a1(1260)
1+− b1(1235)

q̄q 3−− ρ3(1690), ω3(1670) (qq)q (3/2)− ∆ 3
2

−(1700) (qq)[ūd̄] 2−− —

q̄q 4++ a4(2040), f4(2050) (qq)q (7/2)+ ∆ 7
2

+(1950) (qq)[ūd̄] 3++ —

q̄s 0− K̄(495) — — — — — —

q̄s 1+ K̄1(1270) [ud]s (1/2)+ Λ(1115) [ud][s̄q̄] 0+ K∗
0(1430)

q̄s 2− K2(1770) [ud]s (3/2)− Λ(1520) [ud][s̄q̄] 1− —

s̄q 0− K(495) — — — — — —

s̄q 1+ K1(1270) [sq]q (1/2)+ Σ(1190) [sq][s̄q̄] 0++ a0(980)
f0(980)

s̄q 1− K∗(890) — — — — — —

s̄q 2+ K∗
2(1430) (sq)q (3/2)+ Σ(1385) (sq)[ūd̄] 1+ K1(1400)

s̄q 3− K∗
3(1780) (sq)q (3/2)− Σ(1670) (sq)[ūd̄] 2− —

s̄q 4+ K∗
4(2045) (sq)q (7/2)+ Σ(2030) (sq)[ūd̄] 3+ —

s̄s 0−+ η(550), η′(958) — — — — — —

s̄s 1+− h1(1380) [sq]s (1/2)+ Ξ(1320) [sq][s̄q̄] 0++ f0(1370)
a0(1450)

s̄s 2−+ η2(1870) [sq]s (3/2)− Ξ(1620) [sq][s̄q̄] 1−+ —

s̄s 1−− Φ(1020) — — — — — —
s̄s 2++ f ′

2(1525) (sq)s (3/2)+ Ξ∗(1530) (sq)[s̄q̄] 1++ f1(1420)

a1(1420)
s̄s 3−− Φ3(1850) (sq)s (3/2)− Ξ(1820) (sq)[s̄q̄] 2−− —

s̄s 2++ f2(1640) (ss)s (3/2)+ Ω(1672) (ss)[s̄q̄] 1+ K1(1650)

Table 4: Quantum numbers of the states and constituent clusters of different meson families
(with only light quarks: q = u, d and s) and their supersymmetric baryon and tetraquark
partners. Each family is separated by a horizontal line. For a qq̄ state P = −(−1)LM , C =
(−1)LM+SM . For the baryons multiplets with same LB and SD we show only the state with
the highest possible value for J . Diquarks represented by [ ] have total spin SD = 0, and the
ones represented by ( ) have SD = 1.
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Supersymmetry across the light and heavy-light spectrum
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Supersymmetry across the light and heavy-light spectrum

Heavy charm quark mass does not break supersymmetry



Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum

Heavy bottom quark mass does not break supersymmetry



New World of Tetraquarks

• Diquark: Color-Confined Constituents: Color

• Diquark-Antidiquark bound states

3C ⇥ 3C = 3̄C + 6C

3̄C ⇥ 3C = 1C

Bound!

�(TN) ' 2�(pN)� �(⇡N)

3̄C

2
⇥
�([{qq}N) + �(qN)

⇤
� [�(qN) + �(q̄N)] = [�({qq}N) + �({qq}N)]

Candidates f0(980)I = 0, JP
= 0

+
, partner of proton

a1(1260)I = 0, JP
= 1

+
, partner of �(1233)

de Tèramond, Dosch, Lorce, sjb

Test twist=4, power-law fall-off of form factors
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0
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~
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p

�⇤

~

k

0
?i = ~

k?i + (1� xi)~q?struck
~

k

0
?i = ~

k?i � xi~q?spectators

< p + q|j+(0)|p >= 2p+F (q2)

p + q

~q?q+ = 0

q2
? = Q2 = �q2

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Form Factors are 
Overlaps of LFWFs

Interaction  
picture

Drell &Yan, West 
Exact LF formula!

Front Form

Drell, sjb



For leptons, such as the electron or neutrino, it is convenient to employ the electron
mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-
current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
then be calculated from the expression

F1(q
2) =

⇧

a

⌥
[dx][d2k⇧]

⇧

j

ej

�
⌅⇥�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇥

a(xi,k⇧i, ⇥i)
 
, (10)

whereas the Pauli and electric dipole form factors are given by

F2(q2)

2M
=

⇧

a

⌥
[dx][d2k⇧]

⇧

j

ej
1

2
⇥ (11)

�
� 1

qL
⌅⇥�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇤

a(xi,k⇧i, ⇥i) +
1

qR
⌅⇤�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇥

a(xi,k⇧i, ⇥i)
 

,

F3(q2)

2M
=

⇧

a

⌥
[dx][d2k⇧]

⇧

j

ej
i

2
⇥ (12)

�
� 1

qL
⌅⇥�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇤

a(xi,k⇧i, ⇥i)�
1

qR
⌅⇤�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇥

a(xi,k⇧i, ⇥i)
 

.

The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is

⌥
[dx] [d2k⇧] ⇤

⇧

�i,ci,fi

⇤
n⌃

i=1

�⌥ ⌥ dxi d2k⇧i

2(2⇤)3

⇥⌅

16⇤3�

�

1�
n⇧

i=1

xi

⇥

�(2)

�
n⇧

i=1

k⇧i

⇥

, (13)

where n denotes the number of constituents in Fock state a and we sum over the
possible {⇥i}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function di�erentiate between the struck and spectator constituents; namely, we
have [13, 15]

k⌅
⇧j = k⇧j + (1� xj)q⇧ (14)

for the struck constituent j and

k⌅
⇧i = k⇧i � xiq⇧ (15)

for each spectator i, where i ⌅= j. Note that because of the frame choice q+ = 0, only
diagonal (n⌅ = n) overlaps of the light-front Fock states appear [14].
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A(⇤,�⌅) = 1

2⇥

�
d�e

i
2⇤�M(�,�⌅)

P+, �P⌅

xiP
+, xi

�P⌅+ �k⌅i

� = Q2

2p·q

x̂, ŷ plane

M2(L) ⇤ L

Must have �↵z = ±1 to have nonzero F2(q2)

-

� = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

⇤(x, b⌅)

x

b⌅(GeV)�1

Identify z ⇤ ⇥ =
q

x(1� x) b⌅

Nonzero Proton Anomalous Moment --> 
Nonzero orbital  quark angular momentum

Exact LF Formula for Pauli Form Factor

Lz=+1 Lz=0
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 Hwang,  
Schmidt, sjb

Light-Front Wavefunction  
S and P- Waves!

QCD S- and P- 
Coulomb Phases 

--Wilson Line 

“Lensing Effect”

i

Collins, Burkardt, Ji, 
Yuan. Pasquini, ...

Leading-Twist 
Rescattering 

Violates pQCD 
Factorization!Sign reversal in DY!

 “Lensing” 
involves soft 

scales



7th International Conference on High Energy Physics in the LHC Era7th International Conference on High Energy Physics in the LHC Era

Supersymmetric Features of QCD 
from LF Holography         

HEP2018
7th International Conference on 

High Energy Physics in the LHC Era 
Universidad Técnica Federico Santa María, 

Valparaiso, Chile  1-11-2018

 Stan Brodsky

Underlying Principles

• Poincarè Invariance: Independent of the observer’s Lorentz frame  

• Quantization at Fixed Light-Front Time 

• Causality: Information within causal horizon 

• Light-Front Holography: AdS5 = LF (3+1) 

• Single fundamental hadronic mass scale κ: but retains the 
Conformal Invariance of the Action (dAFF)!  

• Unique color-confining LF Potential! 

• Superconformal Algebra:  Mass Degenerate 4-Plet:

U(⇣2) = 4⇣2

Meson qq̄ $ Baryon q[qq] $ Tetraquark [qq][q̄q̄]

z $ ⇣ where ⇣

2 = b

2
?x(1� x)

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
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x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

�2 = x(1� x)b2
�

⌧

https://indico.cern.ch/event/628450/
https://indico.cern.ch/event/628450/


5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb

e�(z) = e+2z2



•Can be used as standard QCD coupling

•Well measured

•Asymptotic freedom at large Q2

•Computable at large Q2 in any pQCD 
scheme

•Universal  β0,  β1

Bjorken sum rule defines effective charge ↵g1(Q2)
Z 1

0
dx[gep

1 (x,Q

2)� g

en
1 (x,Q

2)] ⌘ ga

6
[1� ↵g1(Q2)

⇡

]



�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb

 = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point

Q (GeV)

�
s(Q

)/�

�g1/� (pQCD)
�g1/� world data

��/� OPAL

AdS
Modified AdS

Lattice QCD (2004) (2007)
�g1/� Hall A/CLAS
�g1/� JLab CLAS

�F3/�GDH limit

0

0.2

0.4

0.6

0.8

1

10 -1 1 10

Sublimated gluons below 1 GeVAdS/QCD dilaton captures the higher twist corrections to  effective charges for Q < 1 GeV

e' = e+2z2



Deur,   
de Teramond, sjb

↵AdS
s (Q2) = ↵AdS

s (0)e�Q2/42

AdS/QCD + pQCDO(�3)

⇤MS = 0.5983 = 0.5983m⇢p
2

= 0.4231m⇢ = 0.328 GeV

↵g1(Q
2) at O[↵5

MS
]
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FIG. 2. Solid (blue) curve: predicted process-independent
RGI running-coupling α̂PI(k2), Eq. (6). The shaded (blue)
band bracketing this curve combines a 95% confidence-level
window based on existing lattice-QCD results for the gluon
two-point function with an error of 10% in the continuum
extraction of the RGI product LF in Eqs. (1). World data
on αg1

[55–80]. The shaded (yellow) band on k > 1GeV
represents αg1

obtained from the Bjorken sum by using QCD
evolution [81–83] to extrapolate high-k2 data into the depicted
region, following Refs. [55, 56]; and, for additional context, the
dashed (red) curve is the light-front holographic model of αg1

canvassed in Ref. [45].

charge αg1(k
2) are depicted in Fig. 2 and therein com-

pared with our prediction for the process-independent
RGI running-coupling α̂PI(k2). Owing to asymptotic
freedom, all reasonable definitions of a QCD effective
charge must agree on k2 ! 1GeV2 and our approach
guarantees this connection. To be specific, in terms of
the widely-used MS running coupling [3]:

αg1(k
2) = α

MS
(k2)(1 + 1.14α

MS
(k2) + . . .) , (8a)

α̂PI(k
2) = α

MS
(k2)(1 + 1.09α

MS
(k2) + . . .) , (8b)

where Eq. (8a) may be built from, e.g. Refs. [84, 85].
Significantly, there is also near precise agreement with

data on the IR domain, k2 " m2
0, and complete accord

on k2 ≥ m2
0. Fig. 1 makes plain that any agreement on

k2 ∈ [0.01, 1]GeV2 is non-trivial because ghost-gluon in-
teractions produce as much as 40% of α̂PI(k2) on this
domain: if these effects were omitted from the gluon
vacuum polarisation, then αg1 and α̂PI would differ by
roughly a factor of two on the critical domain of transi-
tion between strong and perturbative QCD.

5: Conclusions.—We have defined and calculated a
process-independent running-coupling for QCD, α̂PI(k2)
[Eq. (6), Fig. 1]. This is a new type of effective charge,
which is an analogue of the Gell-Mann–Low effective cou-
pling in QED, being completely determined by the gauge-
boson two-point function. Our prediction for α̂PI(k2) is

parameter-free, being obtained by combining the self-
consistent solution of a set of Dyson-Schwinger equa-
tions with results from lattice-QCD; and it smoothly uni-
fies the nonperturbative and perturbative domains of the
strong-interaction theory. This process-independent run-
ning coupling is known to unify a vast array of observ-
ables, e.g. the pion mass and decay constant, and the
light meson spectrum [86]; the parton distribution am-
plitudes of light- and heavy-mesons [87–89], associated
elastic and transition form factors [90, 91], etc.
Finally, and perhaps surprisingly at first sight, α̂PI(k2)

is almost pointwise identical at infrared momenta to the
process-dependent effective charge, αg1 , defined via the
Bjorken sum rule, one of the most basic constraints on
our knowledge of nucleon spin structure, and in com-
plete agreement on the domain of perturbative momenta
[Fig. 2]. Equivalence on the perturbative domain is guar-
anteed for any two reasonable definitions of QCD’s ef-
fective charge, but here the subleading terms differ by
just 4% [Eqs. (8)]. An excellent match at infrared mo-
menta, i.e. below the scale at which perturbation theory
would locate the Landau pole, is non-trivial; and crucial
to this agreement is the careful treatment and incorpo-
ration of a special class of gluon-ghost scattering effects.
One is naturally compelled to ask how these two appar-
ently unrelated definitions of a QCD effective charge can
be so similar? We attribute this outcome to a physi-
cally useful feature of the Bjorken sum rule, viz. it is
an isospin non-singlet relation and hence contributions
from many hard-to-compute processes are suppressed,
and these same processes are omitted in our computa-
tion of α̂PI(k2).
The analysis herein unifies two vastly different ap-

proaches to understanding the infrared behaviour of
QCD, one essentially phenomenological and the other de-
liberately computational, embedded within QCD. There
is no Landau pole in our predicted running coupling.
In fact, there is an inflection point at

√
k2 = 0.7GeV,

marking a transition wall at which, as momenta de-
creasing from the ultraviolet promote growth in the cou-
pling, that coupling turns away from the Landau pole,
the growth slows, and finally the coupling saturates:
α̂PI(k2 = 0) ≈ 0.9π [Fig. 2]. This unification identifies
the Bjorken sum rule as a near direct means by which to
gain empirical insight into a QCD analogue of the Gell-
Mann–Low effective charge.
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We unify two widely different approaches to understanding the infrared behaviour of quantum
chromodynamics (QCD), one essentially phenomenological, based on data, and the other computa-
tional, realised via quantum field equations in the continuum theory. Using the latter, we explain
and calculate a process-independent running-coupling for QCD, a new type of effective charge that
is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is
almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which
provides one of the most basic constraints on our knowledge of nucleon spin structure. This re-
veals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD’s
Gell-Mann–Low effective charge.

1: Introduction.— In quantum gauge field theories de-
fined in four spacetime dimensions, the Lagrangian cou-
plings and masses do not remain constant. Instead, ow-
ing to the need for ultraviolet (UV) renormalisation, they
come to depend on a mass scale, which can often be re-
lated to the energy or momentum at which a given pro-
cess occurs. The archetype is quantum electrodynamics
(QED), for which a sensible perturbation theory can be
defined [1]. Within this framework, owing to the Ward
identity [2], there is a single running coupling, measur-
ing the strength of the photon–charged-fermion vertex,
which can be obtained by summing the collection of vir-
tual processes that change the bare photon into a dressed
object, viz. by computing the photon vacuum polarisa-
tion. QED’s running coupling is known to great accuracy
[3] and the running has been observed directly [4, 5].

A new coupling appears when electromagnetism is
combined with weak interactions to produce the Stan-
dard Electroweak Model [6]. It may be characterised by
sin2 θW , where θW is a scale-dependent angle which spec-
ifies the particular mixing between the model’s defining
neutral gauge bosons that produces the observed photon
and Z0-boson. A perturbation theory can also be de-
fined for the electroweak theory [7] so that sin2 θW can
be computed and compared with precise experiments [3].

At first sight, the addition of quantum chromodynam-
ics (QCD) [8] to the Standard Model does not quali-
tatively change anything, despite the presence of four
possibly distinct strong-interaction vertices (gluon-ghost,
three-gluon, four-gluon and gluon-quark) in the renor-
malised theory. An array of Slavnov-Taylor identities
(STIs) [9, 10], implementing BRST symmetry [11, 12]
(a generalisation of non-Abelian gauge invariance for the
quantised theory) ensures that a single running coupling
characterises all four interactions on the domain within
which perturbation theory is valid. The difference here
is that whilst QCD is asymptotically free and extant ev-

idence suggests that perturbation theory is valid at large
momentum scales, all dynamics is nonperturbative at
those scales typical of everyday strong-interaction phe-
nomena, e.g. ζ ! mp, where mp is the proton’s mass.

The questions that arise are how many distinct run-
ning couplings exist in nonperturbative QCD, and how
can they be computed? Given that there are four individ-
ual, apparently UV-divergent interaction vertices in the
perturbative treatment of QCD, there could be as many
as four distinct couplings at infrared (IR) momenta. (Of
course, if nonperturbatively there are two or more cou-
plings, they must all become equivalent on the perturba-
tive domain.) In our view, nonperturbatively, too, QCD
possesses a unique running coupling. The alternative ad-
mits the possibility of a different renormalisation-group-
invariant (RGI) intrinsic mass-scale for each coupling and
no guarantee of a connection between them. In such cir-
cumstances, BRST symmetry would likely be irreparably
broken by nonperturbative dynamics and one would be
pressed to conclude that QCD was non-renormalisable
owing to IR dynamics. There is no empirical evidence
to support such a conclusion: QCD does seem to be a
well-defined theory at all momentum scales, owing to the
dynamical generation of gluon [13–18] and quark masses
[19–21], which are large at IR momenta.

2: Process-independent running coupling.—Poincaré co-
variance is of enormous importance in modern physics,
e.g. it places severe limitations on the nature and number
of those independent amplitudes that are required to fully
specify any one of a gauge theory’s n-point Schwinger
functions (Euclidean Green functions). Analyses and
quantisation procedures that violate Poincaré covariance
lead to a rapid proliferation in the number of such func-
tions. For example, the gluon 2-point function (propaga-
tor, Dµν) is completely specified by one scalar function
in the class of linear covariant gauges; but, in the class of
axial gauges, two unconnected functions are required and
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Superconformal Algebra
2X2 Hadronic Multiplets
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Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, JP = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m2 =
Pn

i=1
m2

i

x
i

to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e�
1
2��m2

, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.
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