Probing proton structure Spin polarisabilities and Compton scattering

Cristina Collicott

on behalf of the A2 collaboration at MAMI

HEP2018

A B < A B <</p>

Polarisabilities of the proton

We're interested in studying the proton polarisabilities:

Scalar polarisabilities

- α and β , describe the response of the proton's structure to an electric or magnetic field.
- Previously studied experimentally...

Spin polarisabilities

- γ, describe the response of the proton's spin to electric and magnetic fields.
- Very little experimental information exists...

伺き くほき くほう

Polarisabilities of the proton

We're interested in studying the proton polarisabilities:

Scalar polarisabilities

- α and β , describe the response of the proton's structure to an electric or magnetic field.
- Previously studied experimentally... ongoing experimental studies

Spin polarisabilities

- γ, describe the response of the proton's spin to electric and magnetic fields.
- Very little experimental information exists...

(4月) (4日) (4日)

Experiment Effort

Understanding proton polarisabilities - scaler terms

proton \rightarrow quark core + positively charged virtual pion cloud

proton \rightarrow quark core + positively charged virtual pion cloud

$$\mathbf{p} = 4\pi \alpha_{E1} \mathbf{E}$$

$$\mathbf{m} = 4\pi\beta_{M1}\mathbf{H}$$

Polarisabilities of the proton

Polarisabilities can be accessed through Compton scattering: $\gamma + {\bf p} \rightarrow \gamma' + {\bf p}'$

Scalar polarisabilities - second order effective Hamiltonian

$$\mathcal{H}_{eff}^{(2)} = -rac{1}{2} \left(4\pi \alpha_{E1} \mathbf{E}^2 + 4\pi \beta_{M1} \mathbf{H}^2
ight)$$

Spin polarisabilities - third order effective Hamiltonian

$$\begin{aligned} H_{eff}^{(3)} &= -\frac{1}{2} \bigg(4\pi \gamma_{E1E1} \boldsymbol{\sigma} \cdot (\mathbf{E} \times \dot{\mathbf{E}}) + 4\pi \gamma_{M1M1} \boldsymbol{\sigma} \cdot (\mathbf{H} \times \dot{\mathbf{H}}) \bigg) \\ &+ \bigg(4\pi \gamma_{M1E2} E_{ij} \sigma_i H_j - 4\pi \gamma_{E1M2} H_{ij} \sigma_i E_j \bigg) \end{aligned}$$

э

イロト イポト イヨト イヨト

Outline

Understanding proton polarisabilities – scaler terms

α_{F1} and β_{M1} have been studied previously...

McGovern, Phillips and Grießhammer. Eur. Phys. J. A49, (2013) & PDG 4 Cristina Collicott

Two linear combinations have been studied previously...

$$\begin{split} \gamma_0 &= -\bar{\gamma}_{E1E1} - \bar{\gamma}_{M1M1} - \bar{\gamma}_{E1M2} - \bar{\gamma}_{M1E2} \\ \gamma_\pi &= -\bar{\gamma}_{E1E1} + \bar{\gamma}_{M1M1} - \bar{\gamma}_{E1M2} + \bar{\gamma}_{M1E2} \end{split}$$

Forward spin polarisability

$$\left(\frac{d\sigma}{d\Omega}\right)_{(\theta=0)} = F(M,\kappa,\alpha,\beta) - \frac{e^4\kappa^2\omega^4}{4\pi M}\gamma_0 + \mathcal{O}(\omega^6)$$

Backward spin polarisability

$$\left(\frac{d\sigma}{d\Omega}\right)_{(\theta=\pi)} = F(M,\kappa,\alpha,\beta) - \frac{e^2\omega^2\omega'^2}{4\pi M^2}(\kappa^2 + 4\kappa + 2)\gamma_{\pi} + \mathcal{O}(\omega^6)$$

(4 同) 4 ヨ) 4 ヨ)

$$\gamma_0 = -rac{1}{4\pi^2}\int_{\omega_{th}}^\infty rac{\sigma_{3/2}(\omega)-\sigma_{1/2}(\omega)}{\omega^3}d\omega$$

GDH- and A2- collaborations. Phys. Rev. Lett. 87, (2001); GDH collaboration. Phys. Rev. Lett. 91, (2003)

$$\gamma_0 = (-1.00 \pm 0.08 \;_{
m stat.}) imes 10^{-4} \; {
m fm}^4$$

GDH- and A2- collaborations. Phys. Rev. Lett. 87, (2001); GDH collaboration. Phys. Rev. Lett. 91, (2003)

Data Sets:

- Sask (1993)
- LEGS (1998)
- LARA (2001)
- SENECA (2001)

Dispersive fitting [L'vov, Petrun'kin, Schumacher] applied to data sets

Camen et. al.: Phys. Rev. C65, (2002); L'vov, Petrun'kin, and Schumacher, Phys. Rev. C55, (1997); 🛌 👳 🥎 🔍

The large backward spin polarisability is dominated by a π^0 -pole term, the t-channel emission of a virtual π^0 .

Schumacher:

$$\gamma_{\pi}^{\pi^0-\mathrm{pole}}=-46.7$$

$$\gamma_{\pi} - \gamma_{\pi}^{\pi^0\text{-pole}} = (8.0 \pm 1.8) imes 10^{-4} \; ext{fm}^4$$

Camen et. al.. Phys. Rev. C65, (2002); L'vov, Petrun'kin, and Schumacher, Phys. Rev. C55, (1997);

Theoretical approaches have been applied to the spin polarisabilities:

$$\begin{aligned} \gamma_0 &= -\gamma_{E1E1} - \gamma_{M1M1} - \gamma_{M1E2} - \gamma_{E1M2} \\ \gamma_\pi &= -\gamma_{E1E1} + \gamma_{M1M1} + \gamma_{M1E2} - \gamma_{E1M2} \end{aligned}$$

	HDPV	DPV	$\mathcal{O}(p^4)_a$	$\mathcal{O}(p^4)_b$	$\mathcal{O}(\epsilon^3)$	ΒχΡΤ	Exp.
$\bar{\gamma}_{E1E1}$	-4.3	-3.8	-5.4	1.3	-1.9	-3.3	No data
$\bar{\gamma}_{M1M1}$	2.9	2.9	1.4	3.3	0.4	3.0	No data
$\bar{\gamma}_{E1M2}$	-0.02	0.5	1.0	0.2	0.7	0.2	No data
$\bar{\gamma}_{M1E2}$	2.2	1.6	1.0	1.8	1.9	1.1	No data
γ_0	-0.8	-1.1	1.9	-3.9	-1.1	-1.0	-1.00(0.08)
γ_{π}	9.4	7.8	6.8	6.1	3.5	7.2	8.0(1.8) *

* For comparison: γ_{π} from LEGS (without π -pole) is +23.4

All polarisabilities are given in units of 10^{-4} fm⁴.

3

Theoretical approaches have been applied to the spin polarisabilities:

$$\begin{aligned} \gamma_0 &= -\gamma_{E1E1} - \gamma_{M1M1} - \gamma_{M1E2} - \gamma_{E1M2} \\ \gamma_\pi &= -\gamma_{E1E1} + \gamma_{M1M1} + \gamma_{M1E2} - \gamma_{E1M2} \end{aligned}$$

	HDPV	DPV	$\mathcal{O}(p^4)_a$	$\mathcal{O}(p^4)_b$	$\mathcal{O}(\epsilon^3)$	ΒχΡΤ	Exp.
$\bar{\gamma}_{E1E1}$	-4.3	-3.8	-5.4	1.3	-1.9	-3.3	No data
$\bar{\gamma}_{M1M1}$	2.9	2.9	1.4	3.3	0.4	3.0	No data
$\bar{\gamma}_{E1M2}$	-0.02	0.5	1.0	0.2	0.7	0.2	No data
$\bar{\gamma}_{M1E2}$	2.2	1.6	1.0	1.8	1.9	1.1	No data
γ_0	-0.8	-1.1	1.9	-3.9	-1.1	-1.0	-1.00(0.08)
γ_{π}	9.4	7.8	6.8	6.1	3.5	7.2	8.0(1.8) *

* For comparison: γ_{π} from LEGS (without π -pole) is +23.4

All polarisabilities are given in units of 10^{-4} fm⁴.

3

A2-MAMI tagged photon facility

We can complete this experiment with the A2 Collaboration at the MAMI tagged photon facility (Mainz, Germany):

Why A2-MAMI?

- Polarized photon beams (linear/circular)
- Proton targets (unpolarized/polarized)
- Detector system ideally suited to study Compton scattering

Experiment Effort at MAMI

We will perform three unique asymmetry measurements:

$$\Sigma = \frac{1}{p} \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}}$$

 $\begin{array}{l} \Sigma_{2z}: \mbox{ Circularly polarized photons, longitudinally polarized protons} \\ \Sigma_{2x}: \mbox{ Circularly polarized photons, transversely polarized protons} \\ \Sigma_3: \mbox{ Linearly polarized photons, unpolarized protons} \end{array}$

Each asymmetry quantifies the change in scattering behaviour due to a **change in polarization orientation**:

- Circularly polarized photons: Helicity flip
- Polarized protons: Flip in polarization axis $(\pm x, \pm z)$
- Linearly polarized photons: Perpendicular polarisation planes

Moving from asymmetries to polarisabilities...

Each Σ has a unique sensitivity to the spin polarisabilities:

Global Analysis

We can perform a global analysis (global χ^2 fitting) combining all asymmetry measurements to extract the spin polarisabilities.

Constraints

We will use the scalar polarisabilities (α and β) as well as the backward and forward polarisabilities (γ_0 and γ_π) to constrain our fit.

 Σ_{2x} : Circularly polarized photons, transversely polarized protons

Allowed for the first extraction of $\gamma_{E1E1} pprox$ -4.7 imes 10⁻⁴ fm⁴

 Σ_{2x} : Circularly polarized photons, transversely polarized protons Σ_3 : Linearly polarized photons, unpolarized protons (LEGS)

Allowed for the first extraction of all four $\gamma {\rm s}$

$\gamma_{\textit{E1E1}}$	=	-3.5 ± 1.2
γ_{M1M1}	=	$\textbf{3.2}\pm\textbf{0.9}$
γ_{E1M2}	=	-0.7 ± 1.2
γ_{M1E2}	=	2.0 ± 0.3

Published in PRL (2014)

*units of 10^{-4} fm⁴

 Σ_{2x} : Circularly polarized photons, transversely polarized protons Σ_3 : Linearly polarized photons, unpolarized protons (LEGS)

Allowed for the first extraction of all four $\gamma {\rm s}$

	HDPV	$\mathcal{O}(p^4)_a$	$\mathcal{O}(p^4)_b$	$\mathcal{O}(\epsilon^3)$	ΒχΡΤ	Experiment
$\bar{\gamma}_{E1E1}$	-4.3	-5.4	1.3	-1.9	-3.3	$\textbf{-3.5}\pm\textbf{1.2}$
$\bar{\gamma}_{M1M1}$	2.9	1.4	3.3	0.4	3.0	3.2 ± 0.9
$\bar{\gamma}_{E1M2}$	-0.02	1.0	0.2	0.7	0.2	-0.7 \pm 1.2
$\bar{\gamma}_{M1E2}$	2.2	1.0	1.8	1.9	1.1	$\textbf{2.0} \pm \textbf{0.3}$

 Σ_{2z} : Circularly polarized photons, longitudinally polarized protons

 $\begin{array}{l} \Sigma_{2z}: \mbox{ Circularly polarized photons, longitudinally polarized protons} \\ \Sigma_{2x}: \mbox{ Circularly polarized photons, transversely polarized protons} \\ \Sigma_3: \mbox{ Linearly polarized photons, unpolarized protons (LEGS)} \end{array}$

Dramatic improvement on the uncertainties:

Δ	$\gamma_{\textit{E1E1}}$	= 1.2	Δ	$\gamma_{\textit{E1E1}}$	pprox 0.4
Δ	γ_{M1M1}	= 0.9	Δ	γ_{M1M1}	pprox 0.4
Δ	γ_{E1M2}	= 1.2	Δ	$\gamma_{\it E1M2}$	pprox 0.8
Δ	γ_{M1E2}	= 0.3	Δ	γ_{M1E2}	pprox 0.4

Paper is in internal review (ETA: submission in a few weeks)

 Σ_3 : Linearly polarized photons, unpolarized protons (MAMI/LEGS)

A bit of a mixed result (systematics still being checked...) New (higher statistics) measurement in the spring!

Full extraction plan

 Σ_{2z} : Circularly polarized photons, longitudinally polarized protons Σ_{2x} : Circularly polarized photons, transversely polarized protons Σ_3 : Linearly polarized photons, unpolarized protons (LEGS/MAMI)

Extraction of $\gamma_{E1E1},~\gamma_{M1M1},~\gamma_{E1M2},$ and γ_{M1E2}

ETA: final paper before end of 2018

New experimental data:

- First measurement of Σ_{2x} for Compton scattering
- First measurement of Σ_{2z} for Compton scattering

First measurement of the proton spin polarisabilities:

	HDPV	$\mathcal{O}(p^4)_a$	$\mathcal{O}(p^4)_b$	$\mathcal{O}(\epsilon^3)$	$B\chi PT$	Experiment
$\bar{\gamma}_{E1E1}$	-4.3	-5.4	1.3	-1.9	-3.3	$\textbf{-3.5}\pm\textbf{1.2}$
$\bar{\gamma}_{M1M1}$	2.9	1.4	3.3	0.4	3.0	$\textbf{3.2} \pm \textbf{0.9}$
$\bar{\gamma}_{E1M2}$	-0.02	1.0	0.2	0.7	0.2	-0.7 \pm 1.2
$\bar{\gamma}_{M1E2}$	2.2	1.0	1.8	1.9	1.1	$\textbf{2.0} \pm \textbf{0.3}$

Upcoming results with improved uncertainties!

17/16

Supplementary

Some topics:

- Fitting routines
- Energy/Theory dependence
- The low energy regime for spin polarisabilities
- New experiments for scaler polarisabilities at MAMI

Extracting the spin polarisabilities

Fitting method

Pasquini disp. relation (HDPV) or Pascalutsa EFT ($B\chi PT$)

$$ar{lpha} + ar{eta} = (13.8 \pm 0.4) imes 10^{-4} \ {
m fm}^3 \ ar{lpha} - ar{eta} = (7.6 \pm 1.7) imes 10^{-4} \ {
m fm}^3 \ \gamma_0 = (-1.00 \pm 0.18) imes 10^{-4} \ {
m fm}^4 \ \gamma_\pi = (8.0 \pm 1.8) imes 10^{-4} \ {
m fm}^4$$

Vary $\bar{\alpha}$, $\bar{\beta}$ and $\bar{\gamma}_{E1E1}$, $\bar{\gamma}_{M1M1}$, $\bar{\gamma}_{E1M2}$, $\bar{\gamma}_{M1E2}$ Global fit with Σ_{2x} , Σ_{2z} and $\Sigma_{3...}$

伺 ト イヨト イヨト

Moving from asymmetries to polarisabilities...

Each Σ has a unique sensitivity to the spin polarisabilities:

Global Analysis

We can perform a global analysis (global χ^2 fitting) combining all asymmetry measurements to extract the spin polarisabilities.

Constraints

We will use the scalar polarisabilities (α and β) as well as the backward and forward polarisabilities (γ_0 and γ_π) to constrain our fit.

Energy dependence: Static polarisabilities

Energy dependent!

... we're interested in the static polarisabilities ($\omega=0$)

CREDIT: Judith McGovern

(人間) とうり くうり

Energy dependence: Static polarisabilities

Energy dependent!

... but we can't measure at $\omega = 0$ (so we need theorists!)

CREDIT: Judith McGovern

Image: A image: A

Outlook – new experiments

Move into the low-energy regime!

- Active polarised proton target
- Target material scintillates
- Allows (low energy) measurement of double polarisation observables

APPT results

・ロン ・四 と ・ ヨン ・ ヨン

æ

Outlook – new experiments

Move into the low-energy regime!

CREDIT: Judith McGovern

New experiments for scaler terms

 $\alpha_{\textit{E1}}$ and $\beta_{\textit{M1}}$ have been studied previously...

V. Olmos de Leon et al., Eur. Phys. J. A10, 207 (2001)

-∰ ► < ≣ ►

New experiments for scaler terms

 $\alpha_{\textit{E1}}$ and $\beta_{\textit{M1}}$ have been studied previously...

V. Olmos de Leon et al., Eur. Phys. J. A10, 207 (2001)

Outline

New experiments for scaler terms

 α_{E1} and β_{M1} have been studied previously...

24/16

Outline

New experiments for scaler terms

 α_{F1} and β_{M1} have been studied previously...

McGovern, Phillips and Grießhammer. Eur. Phys. J. A49, (2013) & PDG 4

Σ_3 results

MAMI electron accelerator

Cascade of RTM

- RTM 1
 - 18 turns
 - 15.3 MeV
- RTM 2
 51 turns
 185.9 MeV
- RTM 3

イロト イポト イヨト イヨト

90 turns 883.1 MeV

э

MAMI electron accelerator

Cascade of RTM

- RTM 1
 - 18 turns
 - 15.3 MeV
- RTM 2
 51 turns
 185.9 MeV
- RTM 3 90 turns
 - 883.1 MeV
- HDSM not used
 - 1.6 GeV

<ロ> (日) (日) (日) (日) (日)

MAMI electron accelerator

Cascade of RTM

- RTM 1
 - 18 turns
 - 15.3 MeV
- RTM 2
 51 turns
 185.9 MeV
- RTM 3 90 turns
 - 883.1 MeV
- HDSM not used
 - 1.6 GeV

<ロ> (日) (日) (日) (日) (日)

Polarized photon beams

MAMI electrons are incident upon a radiator \rightarrow bremsstrahlung

Glasgow-Mainz Tagger

353 plastic scintillators

Cristina Collicott

"Photon Tagging"

If we measure the energy of the electron after bremsstrahlung, we can infer the energy of the photon:

$$k = E_o - E$$

Note: $E_{\alpha} \approx$ monoenergetic $(\Delta E_o = 0.0002 E_o)$

Spin polarisabilities of the proton (HEP 2018)

Polarized photon beams

MAMI electrons are incident upon a radiator \rightarrow bremsstrahlung

Glasgow-Mainz Tagger

353 plastic scintillators

Cristina Collicott

"Photon Tagging"

If we measure the energy of the electron after bremsstrahlung, we can infer the energy of the photon:

$$k = E_o - E$$

Note: $E_{\alpha} \approx$ monoenergetic $(\Delta E_o = 0.0002 E_o)$

Spin polarisabilities of the proton (HEP 2018)

Polarized photon beams

Polarized photon beams are produced via Bremsstrahlung

Circularly polarized beams

Polarized electrons, incident upon a radiator (copper), will produce circularly polarized bremsstrahlung photons.

Linearly polarized beams

Electrons, incident upon a crystalline radiator (diamond), will produce linearly polarized bremsstrahlung photons.

Proton Targets

Polarized photon beams are incident upon a proton target

Polarized Proton Target

- 2 cm Butanol Target
- Transverse/longitudinal pol. greater than 90 %

Unpolarized Proton Target

- Liquid Hydrogen Target
- 2 cm, 5 cm, and 10 cm target cells

・ 同・ ・ ヨ・

Detectors

Advantages

- Huge angular coverage
- Excellent γ reconstruction

Ideally suited for Compton scattering experiments

Crystal Ball System

- CB (672 Nal detectors), MWPC, PID
- Angular coverage: $(\theta = 20^\circ \rightarrow 160^\circ)$

TAPS System

- TAPS (384 BaF₂ and 72 PbWO₄ detectors), Veto Wall
- Covers the forward angles missed by the CB $(\theta \rightarrow 20^{\circ})$

Suppose we include an intermediate state, A, in the CS interaction. $\gamma + {\bf p} \to {\bf A} \to \gamma' + {\bf p}'$

Let's keep our example: γ_{M1E2}

- Assume p and p' are ground state protons $\rightarrow J^{\pi} = \frac{1}{2}^+$
- Incident photon (E2) has $L^{\pi} = 2^+$
- Scattered photon (M1) has $L^{\pi} = 1^+$

What restrictions does this place on the state A?

- Parity conservation: π_A must be +
- Angular Momentum conservation: $J_A = \frac{3}{2}$

$$ightarrow$$
 A must have $J^{\pi}_{A}=rac{3}{2}^{+}$

・ 「 ・ ・ ・ ・ ・ ・ ・ ・

What could A be to satisfy $J_A^{\pi} = \frac{3}{2}^+$?

- $\pi_A = +$ requires A have L = 0, 2, ... (even)
- The spin of A must satisfy $|L S| \le J \le |L + S|$
- L = 0 \rightarrow S = $\frac{3}{2}$ \rightarrow Ground state Δ^+
- $\bullet~L=2 \rightarrow S=\frac{1}{2}$, $\frac{3}{2}~\rightarrow$ D-state proton/ Δ^+

Excitation of the ground state Δ^+ (uud) \rightarrow spin flip transition

$$\gamma(2^+) + p(\frac{1}{2}^+) \to \Delta^+(\frac{3}{2}^+) \to \gamma'(1^+) + p'(\frac{1}{2}^+)$$

・吊り イラト イラト 一戸

36/16