Probing proton structure
Spin polarisabilities and Compton scattering

Cristina Collicott

on behalf of the A2 collaboration at MAMI

HEP2018
We’re interested in studying the proton polarisabilities:

Scalar polarisabilities
- α and β, describe the response of the proton’s structure to an electric or magnetic field.
- Previously studied experimentally...

Spin polarisabilities
- γ, describe the response of the proton’s spin to electric and magnetic fields.
- Very little experimental information exists...
We’re interested in studying the proton polarisabilities:

Scalar polarisabilities
- α and β, describe the response of the proton’s structure to an electric or magnetic field.
- Previously studied experimentally... ongoing experimental studies

Spin polarisabilities
- γ, describe the response of the proton’s spin to electric and magnetic fields.
- Very little experimental information exists...
Understanding proton polarisabilities – scaler terms

proton → quark core + positively charged virtual pion cloud
proton → quark core + positively charged virtual pion cloud

\[p = 4\pi\alpha E_1 E \]

\[m = 4\pi\beta M_1 H \]
Polarisabilities of the proton

Polarisabilities can be accessed through Compton scattering:
\[\gamma + p \rightarrow \gamma' + p' \]

Scalar polarisabilities - second order effective Hamiltonian

\[H_{\text{eff}}^{(2)} = -\frac{1}{2} \left(4\pi \alpha_{E1} E^2 + 4\pi \beta_{M1} H^2 \right) \]

Spin polarisabilities - third order effective Hamiltonian

\[H_{\text{eff}}^{(3)} = -\frac{1}{2} \left(4\pi \gamma_{E1E1} \sigma \cdot (E \times \dot{E}) + 4\pi \gamma_{M1M1} \sigma \cdot (H \times \dot{H}) \right) \]
\[+ \left(4\pi \gamma_{M1E2} E_{ij} \sigma_i H_j - 4\pi \gamma_{E1M2} H_{ij} \sigma_i E_j \right) \]
Understanding proton polarisabilities – scaler terms

\(\alpha_{E1} \text{ and } \beta_{M1} \) have been studied previously...

\[
\bar{\alpha}_{E1} = [11.2 \pm 0.4] \times 10^{-4} \text{ fm}^3
\]

\[
\bar{\beta}_{M1} = [2.5 \pm 0.4] \times 10^{-4} \text{ fm}^3
\]

Cristina Collicott
Spin polarisabilities of the proton (HEP 2018)
Two linear combinations have been studied previously...

\[
\gamma_0 = -\bar{\gamma}E_1E_1 - \bar{\gamma}M_1M_1 - \bar{\gamma}E_1M_2 - \bar{\gamma}M_1E_2 \\
\gamma_\pi = -\bar{\gamma}E_1E_1 + \bar{\gamma}M_1M_1 - \bar{\gamma}E_1M_2 + \bar{\gamma}M_1E_2
\]

Forward spin polarisability

\[
\left(\frac{d\sigma}{d\Omega}\right)_{(\theta=0)} = F(M, \kappa, \alpha, \beta) - \frac{e^4 \kappa^2 \omega^4}{4\pi M} \gamma_0 + O(\omega^6)
\]

Backward spin polarisability

\[
\left(\frac{d\sigma}{d\Omega}\right)_{(\theta=\pi)} = F(M, \kappa, \alpha, \beta) - \frac{e^2 \omega^2 \omega'^2}{4\pi M^2} (\kappa^2 + 4\kappa + 2) \gamma_\pi + O(\omega^6)
\]
Understanding proton polarisabilities – spin terms

\[\gamma_0 = -\frac{1}{4\pi^2} \int_{\omega_{th}}^{\infty} \frac{\sigma_{3/2}(\omega) - \sigma_{1/2}(\omega)}{\omega^3} d\omega \]

Understanding proton polarisabilities – spin terms

\(E_\gamma = 200 - 800 \text{ MeV} \)

\(E_\gamma = 700 - 1800 \text{ MeV} \)

\[\gamma_0 = (-1.00 \pm 0.08_{\text{stat.}}) \times 10^{-4} \text{ fm}^4 \]

Cristina Collicott
Understanding proton polarisabilities – spin terms

\[\gamma_\pi \rightarrow d\sigma/d\Omega \text{ for Compton scattering at } 135^\circ \]

Data Sets:
- Sask (1993)
- LEGS (1998)
- LARA (2001)
- SENECA (2001)

Dispersive fitting [L’vov, Petrun’kin, Schumacher] applied to data sets

The large backward spin polarisability is dominated by a π^0-pole term, the t-channel emission of a virtual π^0.

Schumacher:

$$\gamma_{\pi}^{\pi^0\text{-pole}} = -46.7$$

$$\gamma_{\pi} - \gamma_{\pi}^{\pi^0\text{-pole}} = (8.0 \pm 1.8) \times 10^{-4} \text{ fm}^4$$

Understanding proton polarisabilities – spin terms

Theoretical approaches have been applied to the spin polarisabilities:

\[\gamma_0 = -\gamma E1E1 - \gamma M1M1 - \gamma M1E2 - \gamma E1M2 \]
\[\gamma_\pi = -\gamma E1E1 + \gamma M1M1 + \gamma M1E2 - \gamma E1M2 \]

<table>
<thead>
<tr>
<th></th>
<th>HDPV</th>
<th>DPV</th>
<th>(\mathcal{O}(p^4)_a)</th>
<th>(\mathcal{O}(p^4)_b)</th>
<th>(\mathcal{O}(\epsilon^3))</th>
<th>B(\chi)PT</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{\gamma}E1E1)</td>
<td>-4.3</td>
<td>-3.8</td>
<td>-5.4</td>
<td>1.3</td>
<td>-1.9</td>
<td>-3.3</td>
<td>No data</td>
</tr>
<tr>
<td>(\bar{\gamma}M1M1)</td>
<td>2.9</td>
<td>2.9</td>
<td>1.4</td>
<td>3.3</td>
<td>0.4</td>
<td>3.0</td>
<td>No data</td>
</tr>
<tr>
<td>(\bar{\gamma}E1M2)</td>
<td>-0.02</td>
<td>0.5</td>
<td>1.0</td>
<td>0.2</td>
<td>0.7</td>
<td>0.2</td>
<td>No data</td>
</tr>
<tr>
<td>(\bar{\gamma}M1E2)</td>
<td>2.2</td>
<td>1.6</td>
<td>1.0</td>
<td>1.8</td>
<td>1.9</td>
<td>1.1</td>
<td>No data</td>
</tr>
<tr>
<td>(\gamma_0)</td>
<td>-0.8</td>
<td>-1.1</td>
<td>1.9</td>
<td>-3.9</td>
<td>-1.1</td>
<td>-1.0</td>
<td>-1.00(0.08)</td>
</tr>
<tr>
<td>(\gamma_\pi)</td>
<td>9.4</td>
<td>7.8</td>
<td>6.8</td>
<td>6.1</td>
<td>3.5</td>
<td>7.2</td>
<td>8.0(1.8) *</td>
</tr>
</tbody>
</table>

* For comparison: \(\gamma_\pi\) from LEGS (without \(\pi\)-pole) is +23.4

All polarisabilities are given in units of \(10^{-4}\) fm\(^4\).
Understanding proton polarisabilities – spin terms

Theoretical approaches have been applied to the spin polarisabilities:

\[\gamma_0 = -\gamma_{E1E1} - \gamma_{M1M1} - \gamma_{M1E2} - \gamma_{E1M2} \]
\[\gamma_\pi = -\gamma_{E1E1} + \gamma_{M1M1} + \gamma_{M1E2} - \gamma_{E1M2} \]

<table>
<thead>
<tr>
<th></th>
<th>HDPV</th>
<th>DPV</th>
<th>(O(p^4)_a)</th>
<th>(O(p^4)_b)</th>
<th>(O(\epsilon^3))</th>
<th>BχPT</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{\gamma}_{E1E1})</td>
<td>-4.3</td>
<td>-3.8</td>
<td>-5.4</td>
<td>1.3</td>
<td>-1.9</td>
<td>-3.3</td>
<td>No data</td>
</tr>
<tr>
<td>(\bar{\gamma}_{M1M1})</td>
<td>2.9</td>
<td>2.9</td>
<td>1.4</td>
<td>3.3</td>
<td>0.4</td>
<td>3.0</td>
<td>No data</td>
</tr>
<tr>
<td>(\bar{\gamma}_{E1M2})</td>
<td>-0.02</td>
<td>0.5</td>
<td>1.0</td>
<td>0.2</td>
<td>0.7</td>
<td>0.2</td>
<td>No data</td>
</tr>
<tr>
<td>(\bar{\gamma}_{M1E2})</td>
<td>2.2</td>
<td>1.6</td>
<td>1.0</td>
<td>1.8</td>
<td>1.9</td>
<td>1.1</td>
<td>No data</td>
</tr>
<tr>
<td>(\gamma_0)</td>
<td>-0.8</td>
<td>-1.1</td>
<td>1.9</td>
<td>-3.9</td>
<td>-1.1</td>
<td>-1.0</td>
<td>-1.00(0.08)</td>
</tr>
<tr>
<td>(\gamma_\pi)</td>
<td>9.4</td>
<td>7.8</td>
<td>6.8</td>
<td>6.1</td>
<td>3.5</td>
<td>7.2</td>
<td>8.0(1.8) *</td>
</tr>
</tbody>
</table>

* For comparison: \(\gamma_\pi \) from LEGS (without \(\pi \)-pole) is +23.4

All polarisabilities are given in units of \(10^{-4} \text{ fm}^4 \).
A2-MAMI tagged photon facility

We can complete this experiment with the A2 Collaboration at the MAMI tagged photon facility (Mainz, Germany):

Why A2-MAMI?

- Polarized photon beams (linear/circular)
- Proton targets (unpolarized/polarized)
- Detector system ideally suited to study Compton scattering
We will perform three unique asymmetry measurements:

\[\Sigma = \frac{1}{p} \left(\frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \right) \]

\(\Sigma_{2z} \): Circularly polarized photons, longitudinally polarized protons

\(\Sigma_{2x} \): Circularly polarized photons, transversely polarized protons

\(\Sigma_3 \): Linearly polarized photons, unpolarized protons

Each asymmetry quantifies the change in scattering behaviour due to a change in polarization orientation:

- Circularly polarized photons: Helicity flip
- Polarized protons: Flip in polarization axis (±x, ±z)
- Linearly polarized photons: Perpendicular polarisation planes
Moving from asymmetries to polarisabilities...

Each Σ has a unique sensitivity to the spin polarisabilities:

Global Analysis
We can perform a global analysis (global χ^2 fitting) combining all asymmetry measurements to extract the spin polarisabilities.

Constraints
We will use the scalar polarisabilities (α and β) as well as the backward and forward polarisabilities (γ_0 and γ_π) to constrain our fit.

![Graph showing the sensitivity of Σ_3 to different γ values](image)
What have we accomplished so far?

Σ_{2x}: Circularly polarized photons, transversely polarized protons

Allowed for the first extraction of $\gamma_{E1E1} \approx -4.7 \times 10^{-4} \text{ fm}^4$
What have we accomplished so far?

Σ_2: Circularly polarized photons, transversely polarized protons
Σ_3: Linearly polarized photons, unpolarized protons (LEGS)

Allowed for the first extraction of all four γs

\[
\begin{align*}
\gamma_{E1E1} &= -3.5 \pm 1.2 \\
\gamma_{M1M1} &= 3.2 \pm 0.9 \\
\gamma_{E1M2} &= -0.7 \pm 1.2 \\
\gamma_{M1E2} &= 2.0 \pm 0.3
\end{align*}
\]

Published in PRL (2014) *units of 10^{-4} fm4*
What have we accomplished so far?

Σ_2: Circularly polarized photons, transversely polarized protons

Σ_3: Linearly polarized photons, unpolarized protons (LEGS)

Allowed for the first extraction of all four γs

<table>
<thead>
<tr>
<th></th>
<th>HDPV</th>
<th>$O(p^4)_a$</th>
<th>$O(p^4)_b$</th>
<th>$O(\epsilon^3)$</th>
<th>BχPT</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\gamma}E1E1$</td>
<td>-4.3</td>
<td>-5.4</td>
<td>1.3</td>
<td>-1.9</td>
<td>-3.3</td>
<td>-3.5 ± 1.2</td>
</tr>
<tr>
<td>$\bar{\gamma}M1M1$</td>
<td>2.9</td>
<td>1.4</td>
<td>3.3</td>
<td>0.4</td>
<td>3.0</td>
<td>3.2 ± 0.9</td>
</tr>
<tr>
<td>$\bar{\gamma}E1M2$</td>
<td>-0.02</td>
<td>1.0</td>
<td>0.2</td>
<td>0.7</td>
<td>0.2</td>
<td>-0.7 ± 1.2</td>
</tr>
<tr>
<td>$\bar{\gamma}M1E2$</td>
<td>2.2</td>
<td>1.0</td>
<td>1.8</td>
<td>1.9</td>
<td>1.1</td>
<td>2.0 ± 0.3</td>
</tr>
</tbody>
</table>
What have we accomplished so far?

\(\Sigma_{2z} \): Circularly polarized photons, longitudinally polarized protons
What have we accomplished so far?

\(\Sigma_{2z} \): Circularly polarized photons, longitudinally polarized protons
\(\Sigma_{2x} \): Circularly polarized photons, transversely polarized protons
\(\Sigma_3 \): Linearly polarized photons, unpolarized protons (LEGS)

Dramatic improvement on the uncertainties:

\[\Delta \gamma_{E1E1} = 1.2 \]
\[\Delta \gamma_{M1M1} = 0.9 \]
\[\Delta \gamma_{E1E2} = 1.2 \]
\[\Delta \gamma_{M1E2} = 0.3 \]
\[\Delta \gamma_{E1E1} \approx 0.4 \]
\[\Delta \gamma_{M1M1} \approx 0.4 \]
\[\Delta \gamma_{E1E2} \approx 0.8 \]
\[\Delta \gamma_{M1E2} \approx 0.4 \]

Paper is in internal review (ETA: submission in a few weeks)
What have we accomplished so far?

\[\Sigma_3 : \text{Linearly polarized photons, unpolarized protons (MAMI/LEGS)} \]

Compton Beam Asymmetry: 297.0 \(\pm \) 10.1 MeV
(Dec. 2012)

Compton Beam Asymmetry: 277.1 \(\pm \) 10.1 MeV
(Dec. 2012)

A bit of a mixed result (systematics still being checked...)

New (higher statistics) measurement in the spring!
Full extraction plan

\[\Sigma_{2z}:\] Circularly polarized photons, longitudinally polarized protons
\[\Sigma_{2x}:\] Circularly polarized photons, transversely polarized protons
\[\Sigma_3:\] Linearly polarized photons, unpolarized protons (LEGS/MAMI)

\[\downarrow\]

Extraction of \(\gamma_{E1E1}, \gamma_{M1M1}, \gamma_{E1M2},\) and \(\gamma_{M1E2}\)

ETA: final paper before end of 2018
Summary

New experimental data:
- First measurement of Σ_{2x} for Compton scattering
- First measurement of Σ_{2z} for Compton scattering

First measurement of the proton spin polarisabilities:

<table>
<thead>
<tr>
<th></th>
<th>HDPV</th>
<th>$\mathcal{O}(p^4)_a$</th>
<th>$\mathcal{O}(p^4)_b$</th>
<th>$\mathcal{O}(\epsilon^3)$</th>
<th>χPT</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{\gamma}_{E1E1}$</td>
<td>-4.3</td>
<td>-5.4</td>
<td>1.3</td>
<td>-1.9</td>
<td>-3.3</td>
<td>-3.5 ± 1.2</td>
</tr>
<tr>
<td>$\tilde{\gamma}_{M1M1}$</td>
<td>2.9</td>
<td>1.4</td>
<td>3.3</td>
<td>0.4</td>
<td>3.0</td>
<td>3.2 ± 0.9</td>
</tr>
<tr>
<td>$\tilde{\gamma}_{E1M2}$</td>
<td>-0.02</td>
<td>1.0</td>
<td>0.2</td>
<td>0.7</td>
<td>0.2</td>
<td>-0.7 ± 1.2</td>
</tr>
<tr>
<td>$\tilde{\gamma}_{M1E2}$</td>
<td>2.2</td>
<td>1.0</td>
<td>1.8</td>
<td>1.9</td>
<td>1.1</td>
<td>2.0 ± 0.3</td>
</tr>
</tbody>
</table>

Upcoming results with improved uncertainties!
Some topics:
- Fitting routines
- Energy/Theory dependence
- The low energy regime for spin polarisabilities
- New experiments for scaler polarisabilities at MAMI
Extracting the spin polarisabilities

Fitting method

Pasquini disp. relation (HDPV) or Pascalutsa EFT ($B\chi$PT)

\[\bar{\alpha} + \bar{\beta} = (13.8 \pm 0.4) \times 10^{-4} \text{ fm}^3 \]
\[\bar{\alpha} - \bar{\beta} = (7.6 \pm 1.7) \times 10^{-4} \text{ fm}^3 \]
\[\gamma_0 = (-1.00 \pm 0.18) \times 10^{-4} \text{ fm}^4 \]
\[\gamma_\pi = (8.0 \pm 1.8) \times 10^{-4} \text{ fm}^4 \]

Vary $\bar{\alpha}$, $\bar{\beta}$ and $\tilde{\gamma}_{E1E1}$, $\tilde{\gamma}_{M1M1}$, $\tilde{\gamma}_{E1M2}$, $\tilde{\gamma}_{M1E2}$

Global fit with Σ_{2x}, Σ_{2z} and Σ_3...
Moving from asymmetries to polarisabilities...

Each Σ has a unique sensitivity to the spin polarisabilities:

Global Analysis

We can perform a global analysis (global χ^2 fitting) combining all asymmetry measurements to extract the spin polarisabilities.

Constraints

We will use the scalar polarisabilities (α and β) as well as the backward and forward polarisabilities (γ_0 and γ_π) to constrain our fit.
Energy dependence: Static polarisabilities

Energy dependent!

... we’re interested in the static polarisabilities ($\omega = 0$)

CREDIT: Judith McGovern

Chiral: JMcG et al., in preparation
Energy dependence: Static polarisabilities

Energy dependent!

... but we can’t measure at $\omega = 0$ (so we need theorists!)

CREDIT: Judith McGovern
Move into the low-energy regime!

- Active polarised proton target
- Target material scintillates
- Allows (low energy) measurement of double polarisation observables
APPT results
Move into the low-energy regime!

CREDIT: Judith McGovern
New experiments for scaler terms

\(\alpha_{E1} \) and \(\beta_{M1} \) have been studied previously...

Static Scaler Polarisabilities

- Energy Dependence:
 \[
 \alpha_{E1} = \alpha_{E1}(\omega) \\
 \beta_{M1} = \beta_{M1}(\omega)
 \]

- Static terms:
 \[
 \bar{\alpha}_{E1} = \alpha_{E1}(0) \\
 \bar{\beta}_{M1} = \beta_{M1}(0)
 \]

Baldin Sum Rule →

Relates the static scaler polarisabilities to the total photoproduction cross section!

\[
\bar{\alpha}_{E1} + \bar{\beta}_{M1} = \frac{1}{2\pi^2} \int_{\omega_{th}}^{\infty} \frac{\sigma_{tot}(\omega)}{\omega^2} d\omega
\]

New experiments for scalar terms

α_{E1} and β_{M1} have been studied previously...

Static Scalar Polarisabilities

- **Energy Dependence:**

 $\alpha_{E1} = \alpha_{E1}(\omega)$

 $\beta_{M1} = \beta_{M1}(\omega)$

- **Static terms:**

 $\bar{\alpha}_{E1} = \alpha_{E1}(0)$

 $\bar{\beta}_{M1} = \beta_{M1}(0)$

Baldin Sum Rule →

Relates the static scalar polarisabilities to the total photoproduction cross section!

$\bar{\alpha}_{E1} + \bar{\beta}_{M1} = (13.8 \pm 0.4) \times 10^{-4} \text{ fm}^3$

New experiments for scaler terms

\(\alpha_{E1} \) and \(\beta_{M1} \) have been studied previously...

\[\bar{\alpha}_{E1} = [12.1 \pm 0.4] \times 10^{-4} \text{ fm}^3 \]
\[\bar{\beta}_{M1} = [1.6 \pm 0.4] \times 10^{-4} \text{ fm}^3 \]

New experiments for scalar terms

\(\alpha_{E1} \) and \(\beta_{M1} \) have been studied previously...

\[\bar{\alpha}_{E1} = [11.2 \pm 0.4] \times 10^{-4} \text{ fm}^3 \]

\[\bar{\beta}_{M1} = [2.5 \pm 0.4] \times 10^{-4} \text{ fm}^3 \]

\[\Sigma_3 \] results

![Graph showing \(\Sigma_3 \) asymmetry vs. \(\theta \) in the LAB frame]

- Blue squares: \(\Sigma \) (Dec. 2012)
- Open circles: LEGS 2001
- Triangles: Leukel 2001
- Red dashed line: MAID
- Green dashed line: DMT
- Pink dashed line: CM12

\(\theta \) in the LAB frame ranges from 0 to 180 degrees.

Data points and error bars represent experimental measurements, with theoretical curves overlaid for comparison.
MAMI electron accelerator

Cascade of RTM

- **RTM 1**
 - 18 turns
 - 15.3 MeV

- **RTM 2**
 - 51 turns
 - 185.9 MeV

- **RTM 3**
 - 90 turns
 - 883.1 MeV

Cristina Collicott
Spin polarisabilities of the proton (HEP 2018)
MAMI electron accelerator

Cascade of RTM
- RTM 1
 - 18 turns
 - 15.3 MeV
- RTM 2
 - 51 turns
 - 185.9 MeV
- RTM 3
 - 90 turns
 - 883.1 MeV

HDSM - not used
- 1.6 GeV
Cascade of RTM

- **RTM 1**
 - 18 turns
 - 15.3 MeV

- **RTM 2**
 - 51 turns
 - 185.9 MeV

- **RTM 3**
 - 90 turns
 - 883.1 MeV

HDSM - not used

- 1.6 GeV
Polarized photon beams

MAMI electrons are incident upon a radiator \(\rightarrow\) bremsstrahlung

“Photon Tagging”

If we measure the energy of the electron after bremsstrahlung, we can infer the energy of the photon:

\[
k = E_o - E
\]

Note:

\[E_o \approx \text{monoenergetic}\]

\[\Delta E_o = 0.0002E_o\]
Polarized photon beams

MAMI electrons are incident upon a radiator → bremsstrahlung

“Photon Tagging”

If we measure the energy of the electron after bremsstrahlung, we can infer the energy of the photon:

\[k = E_o - E \]

Note:

\[E_o \approx \text{monoenergetic} \]

\[(\Delta E_o = 0.0002E_o) \]

Glasgow–Mainz Tagger

353 plastic scintillators
Polarized photon beams are produced via Bremsstrahlung

Circularly polarized beams
Polarized electrons, incident upon a radiator (copper), will produce circularly polarized bremsstrahlung photons.

Linearly polarized beams
Electrons, incident upon a crystalline radiator (diamond), will produce linearly polarized bremsstrahlung photons.
Polarized photon beams are incident upon a proton target

Polarized Proton Target
- 2 cm Butanol Target
- Transverse/longitudinal pol. greater than 90 %

Unpolarized Proton Target
- Liquid Hydrogen Target
- 2 cm, 5 cm, and 10 cm target cells
Detectors

Advantages
- Huge angular coverage
- Excellent γ reconstruction

Ideal suited for Compton scattering experiments

Crystal Ball System
- CB (672 NaI detectors), MWPC, PID
- Angular coverage: $(\theta = 20^\circ \rightarrow 160^\circ)$

TAPS System
- TAPS (384 BaF$_2$ and 72 PbWO$_4$ detectors), Veto Wall
- Covers the forward angles missed by the CB $(\theta \rightarrow 20^\circ)$
Suppose we include an intermediate state, A, in the CS interaction.
\[\gamma + p \rightarrow A \rightarrow \gamma' + p' \]

Let’s keep our example: \(\gamma_{M1E2} \)
- Assume \(p \) and \(p' \) are ground state protons \(\rightarrow J^\pi = \frac{1}{2}^+ \)
- Incident photon (E2) has \(L^\pi = 2^+ \)
- Scattered photon (M1) has \(L^\pi = 1^+ \)

What restrictions does this place on the state A?
- Parity conservation: \(\pi_A \) must be +
- Angular Momentum conservation: \(J_A = \frac{3}{2} \)

\(\rightarrow A \) must have \(J_A^\pi = \frac{3}{2}^+ \).
Understanding proton polarisabilities – spin terms

What could A be to satisfy $J^\pi_A = \frac{3}{2}^+$?

- $\pi_A = +$ requires A have \(L = 0, 2, \ldots \) (even)
- The spin of A must satisfy \(|L - S| \leq J \leq |L + S|\)
- \(L = 0 \rightarrow S = \frac{3}{2} \rightarrow \) Ground state \(\Delta^+ \)
- \(L = 2 \rightarrow S = \frac{1}{2}, \frac{3}{2} \rightarrow \) D-state proton/\(\Delta^+ \)

Excitation of the ground state \(\Delta^+ \) (uud) \rightarrow spin flip transition

$$\gamma(2^+) + p\left(\frac{1}{2}^+\right) \rightarrow \Delta^+\left(\frac{3}{2}^+\right) \rightarrow \gamma'(1^+) + p'\left(\frac{1}{2}^+\right)$$